309 resultados para CHLORINE-RESISTANT MEMBRANE
Resumo:
Treponema pallidum PCR (Tp-PCR) is a direct diagnostic method for primary and secondary syphilis, but there is no recommendation regarding the best choice of target gene. In this study, we sequentially tested 272 specimens from patients with sexually transmitted ulcers using Tp-PCR targeting the tpp47 and then polA genes. The two methods showed similar accuracies and an almost-perfect agreement.
Resumo:
Chronic primary headache often cause significant interference with function and quality of life despite acute and preventive medicines. New treatments are emerging for pharmacologically intractable cluster headache and migraine. Occipital nerve stimulation in chronic cluster headache and botulinum toxin in chronic migraine represent the most promising therapies.
Resumo:
Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively.
Resumo:
The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.
Resumo:
Résumé : Introduction : L'objectif de cette étude était d'une part d'évaluer les caractéristiques histologiques des fragments cellulaires rétiniens attachés à la limitante interne après vitrectomie et pelage d'une membrane epirétinienne, et d'autre part de mettre en évidence des différences histologiques entre les cas opérés avec ou sans l'aide d'ICG dilué dans du glucose 5%. Méthodes Nous avons examiné rétrospectivement l'histologie de 88 spécimens de membranes épimaculaires contenant la limitante interne de la rétine, qui ont été enlevés chirurgicalement entre 1995 et 2003. L'analyse histologique a centré principalement l'attention sur la présence et les caractéristiques des fragments cellulaires rétiniens attachés à la limitante interne. L'analyse statistique a comparé les résultats entre le groupe I (chirurgie conventionnelle sans l'aide de l'ICG) et le groupe II (chirurgie à l'aide de l'ICG). Résultats Soixante et onze patients ont eu une vitrectomie sans l'aide de l'ICG (groupe I) et 17 avec l'aide de l'ICG (groupe II). Le nombre de débris de cellules de Müller à la surface rétinienne de la limitante interne était plus important dans le groupe I (sans ICG) que dans le groupe II (avec ICG) (40.8% versus 11.8% ; p = 0.024). Des larges fragments cellulaires rétiniens attachés à la limitante interne ont été plus fréquemment observés dans le groupe I (sans ICG) que dans le groupe II (avec ICG) (63.4% versus 23.5%; p= 0.003). Dans cinq (7%) cas du groupe I, de gros éléments cellulaires rétiniens ont été mis en évidence (des axones neuraux ou des vaisseaux sanguins). De tels éléments n'ont pas été retrouvés dans les spécimens du groupe II (avec ICG). Conclusions L'utilisation de l'ICG dilué dans du glucose 5% pour faciliter le pelage d'une membrane épimaculaire et notamment l'ablation de la limitante interne de la rétine semble diminuer de manière significative le nombre et la taille des débris des cellules de Muller adhérents à la face rétinienne de la membrane limitante interne de la rétine. Cette observation suggère que l'utilisation per-opératoire d'ICG dilué dans du glucose 5% facilite l'ablation de la limitante interne pendant la chirurgie de la membrane epirétinienne en diminuant l'adhérence de la limitante interne à la rétine.
Resumo:
Novel macrocyclic amidinourea derivatives 11, 18, and 25 were synthesized and evaluated as antifungal agents against wild-type and fluconazole resistant Candida species. Macrocyclic compounds 11 and 18 were synthesized through a convergent approach using as a key step a ring-closing metathesis macrocyclization reaction, whereas compounds 25 were obtained by our previously reported synthetic pathway. All the macrocyclic amidinoureas showed antifungal activity toward different Candida species higher or comparable to fluconazole and resulted highly active against fluconazole resistant Candida strains showing in many cases minimum inhibitory concentration values lower than voriconazole.
Resumo:
Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.
Resumo:
OBJECTIVES: The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) at high bacterial densities. The effect of three inoculum sizes on the selection of resistance to vancomycin, daptomycin, and linezolid was investigated in methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Low (10(4) CFU/ml), medium (10(6) CFU/ml), and high (10(8) CFU/ml) inocula of MRSA were exposed to twofold increasing concentrations of either drug during 15 days of cycling. MICs for low (MICL), medium (MICM), and high (MICH) inocula were determined daily. Conventional MICs were measured at days 1, 5, 10, and 15. Experiments were performed in triplicate. RESULTS: At the beginning of the experiment a small IE was observed for vancomycin (MICL=1 μg/ml, MICM=1-2 μg/ml, and MICH=2 μg/ml) and a significant IE for daptomycin (MICL=0.25 μg/ml, MICM=0.25-0.5 μg/ml, and MICH=2 μg/ml). Linezolid exhibited no IE at low and medium inocula (MICL=1 μg/ml and MICM=1-2 μg/ml), but with the high inoculum, concentrations up to 2,048 μg/ml did not fully inhibit visual growth. During cycling, increase of MIC was observed for all antibiotics. At day 15, MICL, MICM, and MICH of vancomycin were 2-4, 4-8, and 4-16 μg/ml and of daptomycin were 0.5-2, 8-128, and 64-256 μg/ml, respectively. MICL and MICM of linezolid were 1 and 2-4 μg/ml, respectively. Conventional MICs showed vancomycin and daptomycin selection of resistance since day 5 depending on the inocula. No selection of linezolid resistance was observed. CONCLUSIONS: Our results showed the importance of the inoculum size in the development of resistance. Measures aimed at lowering the inoculum at the site of infection should be used whenever possible in parallel to antimicrobial therapy.
Resumo:
BACKGROUND: The continuous spread of penicillin-resistant pneumococci represents a permanent threat in the treatment of pneumococcal infections, especially when strains show additional resistance to quinolones. The main objective of this study was to determine a treatment modality impeding the emergence of quinolone resistance. RESULTS: Exposure of a penicillin-resistant pneumococcus to increasing concentrations of trovafloxacin or ciprofloxacin selected for mutants resistant to these drugs. In the presence of sub-inhibitory concentrations of vancomycin, development of trovafloxacin-resistance and high-level ciprofloxacin-resistance were prevented. CONCLUSIONS: Considering the risk of quinolone-resistance in pneumococci, the observation might be of clinical importance.
Resumo:
Penicillin resistance in Streptococcus spp. involves multiple mutations in both penicillin-binding proteins (PBPs) and non-PBP genes. Here, we studied the development of penicillin resistance in the oral commensal Streptococcus gordonii. Cyclic exposure of bacteria to twofold-increasing penicillin concentrations selected for a progressive 250- to 500-fold MIC increase (from 0.008 to between 2 and 4 microg/ml). The major MIC increase (> or = 35-fold) was related to non-PBP mutations, whereas PBP mutations accounted only for a 4- to 8-fold additional increase. PBP mutations occurred in class B PBPs 2X and 2B, which carry a transpeptidase domain, but not in class A PBP 1A, 1B, or 2A, which carry an additional transglycosylase domain. Therefore, we tested whether inactivation of class A PBPs affected resistance development in spite of the absence of mutations. Deletion of PBP 1A or 2A profoundly slowed down resistance development but only moderately affected resistance in already highly resistant mutants (MIC = 2 to 4 microg/ml). Thus, class A PBPs might facilitate early development of resistance by stabilizing penicillin-altered peptidoglycan via transglycosylation, whereas they might be less indispensable in highly resistant mutants which have reestablished a penicillin-insensitive cell wall-building machinery. The contribution of PBP and non-PBP mutations alone could be individualized in DNA transformation. Both PBP and non-PBP mutations conferred some level of intrinsic resistance, but combining the mutations synergized them to ensure high-level resistance (> or = 2 microg/ml). The results underline the complexity of penicillin resistance development and suggest that inhibition of transglycosylase might be an as yet underestimated way to interfere with early resistance development.
Resumo:
Transcatheter (or percutaneous) renal denervation is a novel technique developed for the treatment of resistant hypertension. So far, only one randomised controlled trial has been published, which has shown a reduction of office blood pressure. The Swiss Society of Hypertension, the Swiss Society of Cardiology, The Swiss Society of Angiology and the Swiss Society of Interventional Radiology decided to establish recommendations to practicing physicians and specialists for good clinical practice. The eligibility of patients for transcatheter renal denervation needs (1.) confirmation of truly resistant hypertension, (2.) exclusion of secondary forms of hypertension, (3.) a multidisciplinary decision confirming the eligibility, (4.) facilities that guarantee procedural safety and (5.) a long-term follow-up of the patients, if possible in cooperation with a hypertension specialist. These steps are essential until long-term data on safety and efficacy are available.
Resumo:
The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.
Resumo:
Patients diagnosed with advanced gastrointestinal stromal tumours (GISTs) who are resistant or intolerant to both imatinib and second-line sunitinib have a poor prognosis and few therapeutic options. We evaluated the efficacy of nilotinib, a novel tyrosine kinase inhibitor (TKI) in patients pretreated with imatinib and sunitinib. Fifty-two consecutive patients treated with oral nilotinib, 400mg twice daily, within the nilotinib compassionate use programme in 12 European cancer centres, were included in this retrospective analysis. Median age was 59 years (range 24-80), and all patients had WHO performance score better than 3. All patients had failed both imatinib and sunitinib pretreatment, either due to progressing GIST (96%) or intolerance (4%). Five patients (10%; 95% confidence interval (CI) 2-18) responded to nilotinib and 19 patients (37%; 95% CI 24-50) achieved a disease stabilisation. Nilotinib was generally well tolerated, but six patients (12%) discontinued treatment due to intolerance. Median progression-free survival of nilotinib treatment was 12 weeks (95% CI 9-15; range 0-104) and median overall survival was 34 weeks (95% CI 3-65; range 2-135). Nilotinib is active in GIST resistant to both imatinib and sunitinib. These results warrant further investigation of nilotinib in GIST.