316 resultados para BETA-ALANINE SUPPLEMENTATION
Resumo:
The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.
Resumo:
In order to test whether an improvement of maximal sprinting speed after creatine (Cr) supplementation was due to the increase of stride frequency (SF), stride length (SL) or both, 7 subjects ran 4 consecutive sprints after 1 week of placebo or Cr supplementation. SF and SL were assessed by a triaxial accelerometer. Compared to the placebo, Cr induced an increase of running speed (+1.4% p < 0.05) and SF (+1.5%, p < 0.01), but not of SL. The drop in performance following repeated sprints was partially prevented by Cr. In conclusion, exogenous Cr enhanced sprinting performance by increasing SF. This result may be related to the recent findings of shortening in muscular relaxation time after Cr supplementation.
Resumo:
Infections remain the leading cause of death after major burns. Trace elements are involved in immunity and burn patients suffer acute trace element depletion after injury. In a previous nonrandomized study, trace element supplementation was associated with increased leukocyte counts and shortened hospital stays. This randomized, placebo-controlled trial studied clinical and immune effects of trace element supplements. Twenty patients, aged 40 +/- 16 y (mean +/- SD), burned on 48 +/- 17% of their body surfaces, were studied for 30 d after injury. They consumed either standard trace element intakes plus supplements (40.4 micromol Cu, 2.9 micromol Se, and 406 micromol Zn; group TE) or standard trace element intakes plus placebo (20 micromol Cu, 0.4 micromol Se, and 100 micromol Zn; group C) for 8 d. Demographic data were similar for both groups. Mean plasma copper and zinc concentrations were below normal until days 20 and 15, respectively (NS). Plasma selenium remained normal for group TE but decreased for group C (P < 0.05 on days 1 and 5). Total leukocyte counts tended to be higher in group TE because of higher neutrophil counts. Proliferation to mitogens was depressed compared with healthy control subjects (NS). The number of infections per patient was significantly (P < 0.05) lower in group TE (1.9 +/- 0.9) than in group C (3.1 +/- 1.1) because of fewer pulmonary infections. Early trace element supplementation appears beneficial after major burns; it was associated with a significant decrease in the number of bronchopneumonia infections and with a shorter hospital stay when data were normalized for burn size.
Resumo:
Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.
Resumo:
PURPOSE OF REVIEW: New insight in mitochondrial physiology has highlighted the importance of mitochondrial dysfunction in the metabolic and neuroendocrine changes observed in patients presenting with chronic critical illness. This review highlights specifically the importance of carnitine status in this particular patient population and its impact on beta-oxidation and mitochondrial function. RECENT FINDINGS: The main function of carnitine is long chain fatty acid esterification and transport through the mitochondrial membrane. Carnitine depletion should be suspected in critically ill patients with risk factors such as prolonged continuous renal replacement therapy or chronic parenteral nutrition, and evidence of beta-oxidation impairments such as inappropriate hypertriglyceridemia or hyperlactatemia. When fatty acid oxidation is impaired, acyl-CoAs accumulate and deplete the CoA intramitochondrial pool, hence causing a generalized mitochondrial dysfunction and multiorgan failure, with clinical consequences such as muscle weakness, rhabdomyolysis, cardiomyopathy, arrhythmia or sudden death. In such situations, carnitine plasma levels should be measured along with a complete assessment of plasma amino acid, plasma acylcarnitines and urinary organic acid analysis. Supplementation should be initiated if below normal levels (20 μmol/l) of carnitine are observed. In the absence of current guidelines, we recommend an initial supplementation of 0.5-1 g/day. SUMMARY: Metabolic modifications associated with chronic critical illness are just being explored. Carnitine deficiency in critically ill patients is one aspect of these profound and complex changes associated with prolonged stay in ICU. It is readily measurable in the plasma and can easily be substituted if needed, although guidelines are currently missing.
Resumo:
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
Resumo:
Background a nd A ims: T he 2 007 ECCO g uidelines o nanemia in inflammatory bowel disease (IBD) favour intravenous(iv) over oral (po) i ron supplementation due to bettereffectiveness and tolerance. Application of guidelines in clinicalpractice m ay r equire time. We a imed to determine thepercentage of IBD patients under iron supplementation therapyand its application mode over time in a large IBD cohort.Methods: Helsana, a leading Swiss health insurance companyprovides c overage f or approximately 18% of t he Swisspopulation, corresponding to about 1.2 million enrollees.Patients with Crohn's disease (CD) and ulcerative colitis (UC)were identified b y keyword search from t he a nonymisedHelsana database.Results: I n total, 6 29 CD ( 61% female) a nd 4 03 UC ( 56%female) patients w ere identified, mean retrospectiveobservation time w as 2 0.4 m onths f or CD and 13 m onths f orUC patients. Of t he entire study population, 29.3% wereprescribed iron. O ccurrence of iron prescription was 21.3% inmales a nd 31.2% in f emales ( odds r atio [OR] 1 .69, 95%-confidence interval [CI] 1.26-2.28). The prescription of iv i ronincreased from 2006/2007 ( 48.8% w ith iv i ron) to 2 008/2009(65.2% with iv iron) by a factor of 1.89.Conclusions: One third of the IBD population was treated withiron supplementation. A gradual s hift from oral t o iv iron wasobserved over time in a large Swiss IBD cohort. This switch inprescription habits g oes a long with the implementation of theECCO consensus guidelines on anemia in IBD.
Resumo:
The CD8alphabeta heterodimer is integral to the selection of the class I-restricted lineage in the thymus; however, the contribution of the CD8beta chain to coreceptor function is poorly understood. To understand whether the CD8beta membrane proximal stalk region played a role in coreceptor function, we substituted it with the corresponding sequence from the CD8alpha polypeptide and expressed the hybrid molecule in transgenic mice in place of endogenous CD8beta. Although the stalk-swapped CD8beta was expressed on the cell surface as a disulfide-bonded heterodimer at equivalent levels of expression to an endogenous CD8beta molecule, it failed to restore selection of CD8(+) class I MHC-restricted T cells and it altered the response of peripheral T cells. Thus, the stalk region of the CD8beta polypeptide has an essential role in ensuring functionality of the CD8alphabeta heterodimer and its replacement compromises the interaction of CD8 with peptide-MHC complexes.
Resumo:
Background and Aims: The 2007 European Crohn's and Colitis Organization guidelines on anemia in inflammatory bowel disease (IBD) favour intravenous (iv) over oral (po) iron supplementation due to better effectiveness and tolerance. We aimed to determine the percentage of IBD patients under iron supplementation therapy and the dynamics of prescription habits (iv versus po) over time. Methods: Helsana, a leading Swiss health insurance company provides coverage for approximately 18% of the Swiss population, corresponding to about 1.2 million enrollees. Patients with Crohn's disease (CD) and ulcerative colitis (UC) were analyzed from the anonymised Helsana database. Results: In total, 629 CD (61% female) and 398 UC (57% female) patients were identified, mean observation time was 31.8 months for CD and 31.0 months for UC patients. Of the entire study population, 27.1% were prescribed iron (21.1% in males and 31.1% in females). Patients treated with IBD-specific drugs (steroids, immunomodulators, anti-TNF agents) were more frequently treated with iron compared to patients without any medication (35.0% vs. 20.9%, OR 1.91, 95%-CI 1.41-2.61). The prescription of iv iron increased from 2006/2007 (48.8% of all patients receiving any iron priscription) to 65.2% in 2008/2009 by a factor of 1.89. Conclusions: One third of the IBD population was treated with iron supplementation. A gradual shift from oral to iv iron was observed over time. This switch in prescription habits goes along with the implementation of the ECCO consensus guidelines on anemia in IBD.
Resumo:
OBJECTIVE: Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS: We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS: We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS: Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.
Resumo:
Chronic inflammation and fatty acid deficiency, in particular in docosahexaenoic acid (DHA, C22:6-n3), occurring in cystic fibrosis patients, are two convincing arguments urging the use of polyunsaturated fatty acids (PUFA) omega-3 in this population. PUFA omega-3 oral dietary intake position in the cystic fibrosis treatment is however not clear despite many years of clinical research. This review article sets out the reasons that conduct nutritionists to try this approach and reviews the results published until nowadays.
Resumo:
Background:Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown.Methods:IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7.Results:Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation.Conclusion:Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes.
Resumo:
peroxisome proliferator-activated receptors (PPARs) are nuclear receptors acting as lipid sensors. Besides its metabolic activity in peripheral organs, the PPAR beta/delta isotype is highly expressed in the brain and its deletion in mice induces a brain developmental defect. Nevertheless, exploration of PPARbeta action in the central nervous system remains sketchy. The lipid content alteration observed in PPARbeta null brains and the positive action of PPARbeta agonists on oligodendrocyte differentiation, a process characterized by lipid accumulation, suggest that PPARbeta acts on the fatty acids and/or cholesterol metabolisms in the brain. PPARbeta could also regulate central inflammation and antioxidant mechanisms in the damaged brain. Even if not fully understood, the neuroprotective effect of PPARbeta agonists highlights their potential benefit to treat various acute or chronic neurological disorders. In this perspective, we need to better understand the basic function of PPARbeta in the brain. This review proposes different leads for future researches.