400 resultados para BENZOTHIOPYRANOINDAZOLE ANTICANCER ANALOGS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Targeting the mTOR signaling pathway with rapamycin in cancer therapy has been less successful than expected due in part to the removal of a negative feedback loop resulting in the over-activation of the PI3K/Akt signaling pathway. As the c-Jun N-terminal kinase (JNK) signaling pathway has been found to be a functional target of PI3K, we investigate the role of JNK in the anticancer efficacy of rapamycin.Materials and Methods. The colon cancer cell line LS174T was treated with rapamycin and JNK phosphorylation was analyzed by Western Blot. Overexpression of a constitutively negative mutant of JNK in LS174T cells or treatment of LS174T cells with the JNK inhibitor SP600125 were used to determine the role of JNK in rapamycin-mediated tumor growth inhibition.Results. Treatment of LS174T cells with rapamycin resulted in the phosphorylation of JNK as observed by Western Blot. The expression of a negative mutant of JNK in LS174T cells or treatment of LS174T cells with SP600125 enhanced the antiproliferative effects of rapamycin. In addition, in vivo, the antitumor activity of rapamycin was potentiated on LS174T tumor xenografts that expressed the dominant negative mutant of JNK.Conclusions. Taken together, these results show that rapamycin-induced JNK phosphorylation and activation reduces the antitumor efficacy of rapamycin in LS174T cells. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of intraocular administration of nitric oxide (NO) donors in the rabbit eye on intraocular pressure (IOP), inflammation, and toxicity. METHODS: Intravitreal and intracameral injections of two NO donors, SIN-1 and SNAP, and SIN-1C and BSS were performed. Clinical examination, IOP measurements, protein evaluation in aqueous humor, and histologic analysis of the ocular globes were realized. Nitric oxide release was demonstrated by nitrite production in the aqueous humor and in the vitreous using the Griess reaction. RESULTS: The drastic decrease of IOP, observed after a single NO donor injection, was correlated directly with nitrite production and, thus, to NO release. Injection of inactive metabolite of SIN-1, SIN-1C, which is not able to release NO, did not modulate IOP. When administered in the aqueous humor or in the vitreous, NO did not diffuse from one segment of the eye to another. No inflammation or histologic damage was observed as a result of a single NO donor administration. CONCLUSIONS: Nitric oxide is implicated directly in the regulation of IOP and its acute, and massive release into the rabbit eye did not induce inflammation or other growth toxic effects on the ocular tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of multiple myeloma has undergone significant changes in the recent past. The arrival of novel agents, especially thalidomide, bortezomib and lenalidomide, has expanded treatment options and patient outcomes are improving significantly. This article summarises the discussions of an expert meeting which was held to debate current treatment practices for multiple myeloma in Switzerland concerning the role of the novel agents and to provide recommendations for their use in different treatment stages based on currently available clinical data. Novel agent combinations for the treatment of newly diagnosed, as well as relapsed multiple myeloma are examined. In addition, the role of novel agents in patients with cytogenetic abnormalities and renal impairment, as well as the management of the most frequent side effects of the novel agents are discussed. The aim of this article is to assist in treatment decisions in daily clinical practice to achieve the best possible outcome for patients with multiple myeloma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the first anti-doping tests in the 1960s, the analytical aspects of the testing remain challenging. The evolution of the analytical process in doping control is discussed in this paper with a particular emphasis on separation techniques, such as gas chromatography and liquid chromatography. These approaches are improving in parallel with the requirements of increasing sensitivity and selectivity for detecting prohibited substances in biological samples from athletes. Moreover, fast analyses are mandatory to deal with the growing number of doping control samples and the short response time required during particular sport events. Recent developments in mass spectrometry and the expansion of accurate mass determination has improved anti-doping strategies with the possibility of using elemental composition and isotope patterns for structural identification. These techniques must be able to distinguish equivocally between negative and suspicious samples with no false-negative or false-positive results. Therefore, high degree of reliability must be reached for the identification of major metabolites corresponding to suspected analytes. Along with current trends in pharmaceutical industry the analysis of proteins and peptides remains an important issue in doping control. Sophisticated analytical tools are still mandatory to improve their distinction from endogenous analogs. Finally, indirect approaches will be discussed in the context of anti-doping, in which recent advances are aimed to examine the biological response of a doping agent in a holistic way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the study was to examine the biotransformation of the anticancer drug imatinib in target cells by incubating it with oxidoreductases expressed in tumor cells. The second objective was to obtain an in silico prediction of the potential activity of imatinib metabolites. An in vitro enzyme kinetic study was performed with cDNA expressed human oxidoreductases and LC-MS/MS analysis. The kinetic parameters (Km and Vmax) were determined for six metabolites. A molecular modeling approach was used to dock these metabolites to the target Abl or Bcr-Abl kinases. CYP3A4 isozyme showed the broadest metabolic capacity, whereas CYP1A1, CYP1B1 and FMO3 isozymes biotransformed imatinib with a high intrinsic clearance. The predicted binding modes for the metabolites to Abl were comparable to that of the parent drug, suggesting potential activity. These findings indicate that CYP1A1 and CYP1B1, which are known to be overexpressed in a wide range of tumors, are involved in the biotransformation of imatinib. They could play a role in imatinib disposition in the targeted stem, progenitor and differentiated cancer cells, with a possible contribution of the metabolites toward the activity of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Fever and neutropenia (FN) often complicate anticancer treatment and can be caused by potentially fatal infections. Knowledge of pathogen distribution is paramount for optimal patient management. METHODS: Microbiologically defined infections (MDI) in pediatric cancer patients presenting with FN by nonmyeloablative chemotherapy enrolled in a prospective multi-center study were analyzed. Effectiveness of empiric antibiotic therapy in FN episodes with bacteremia was assessed taking into consideration recently published treatment guidelines for pediatric patients with FN. RESULTS: MDI were identified in a minority (22%) of pediatric cancer patients with FN. In patients with, compared to without MDI, fever (median, 5 [IQR 3-8] vs. 2 [IQR1-3] days, p < 0.001) and hospitalization (10 [6-14] vs. 5 [3-8] days, p < 0.001) lasted longer, transfer to the intensive care unit was more likely (13 of 95 [14%] vs. 7 of 346 [2.0%], p < 0.001), and antibiotics were given longer (10 [7-14] vs. 5 [4-7], p < 0.001). Empiric antibiotic therapy in FN episodes with bacteremia was highly effective if not only intrinsic and reported antimicrobial susceptibilities were considered but the purposeful omission of coverage for coagulase negative staphylococci and enterococci was also taken into account (81% [95%CI 68 - 90] vs. 96.6% [95%CI 87 - 99.4], p = 0.004) CONCLUSIONS: MDI were identified in a minority of FN episodes but they significantly affected management and the clinical course of pediatric cancer patients. Compliance with published guidelines was associated with effectiveness of empiric antibiotic therapy in FN episodes with bacteremia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades, new technologies have been introduced in the daily clinical practice of the radiation oncologist: 3D-Conformal radiotherapy (RT) became almost universally available, thereafter, intensity modulated RT (IMRT) gained large diffusion, due to its potential impact in improving the clinical outcomes, and more recently, helical and volumetric arc IMRT with image-guided RT are becoming more and more diffused and used for prostate cancer patients. The conventional dose-fractionation results to be the best compromise between the efficacy and the safety of the treatment, but combining new techniques, modern RT allows to overcame one of the major limits of the 'older' RT: the impossibility of delivering higher total doses and/or high dose/fraction. The evidences regarding radiobiology, clinical and technological evolution of RT in prostate cancer have been reported and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The benefit of postoperative radiotherapy (RT) has been demonstrated in elderly patients aged 65 years or older with glioblastoma multiforme. Hypofractionated RT schedules can reduce the time and morbidity of treatment while maintaining comparable survival outcomes to lengthy conventional RT. Current international randomized clinical trials are studying the optimized hypofractionated RT regimens, hypofractionated RT in comparison with temozolomide chemotherapy and hypofractionated RT in comparison with the same RT plus temozolomide. Given the guarded prognosis of the elderly and frail patients, quality of life and side effects of treatment should be closely examined. As more than half of cancers in the world occur in developing countries, hypofractionated RT could be better utilized as a cost-effective treatment for this group of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Patients who have acute coronary syndromes with or without ST-segment elevation have high rates of major vascular events. We evaluated the efficacy of early clopidogrel administration (300 mg) (<24 hours) when given with aspirin in such patients. METHODS: We included 30,243 patients who had an acute coronary syndrome with or without ST segment elevation. Data on early clopidogrel administration were available for 24,463 (81%). Some 15,525 (51%) of the total cohort were administrated clopidogrel within 24h of admission. RESULTS: In-hospital death occurred in 2.9% of the patients in the early clopidogrel group treated with primary PCI and in 11.4% of the patients in the other group without primary percutaneous coronary intervention (PCI) and no early clopidogrel. The unadjusted clopidogrel odds ratio (OR) for mortality was 0.31 (95% confidence interval 0.27-0.34; p <0.001). Incidence of major adverse cardiac death (MACE) was 4.1% in the early clopidogrel group treated with 1°PCI and 13.5% in the other group without primary PCI and no early clopidogrel (OR 0.35, confidence interval 0.32-0.39, p <0.001). Early clopidogrel administration and PCI were the only treatment lowering mortality as shown by mutlivariate analysis. CONCLUSIONS: The early administration of the anti-platelet agent clopidogrel in patients with acute coronary syndromes with or without ST-segment elevation has a beneficial effect on mortality and major adverse cardiac events. The lower mortality rate and incidence of MACE emerged with a combination of primary PCI and early clopidogrel administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.