216 resultados para Amyraut, Moïse, 1596-1664.
Resumo:
Dans la Bible hébraïque, le pardon joue un rôle dans des genres littéraires différents tels que les narratifs des patriarches, les textes législatifs, ainsi que les textes de réflexions théologiques. Plusieurs expressions s'y réfèrent : à part le verbe technique sālaḥ « pardonner », il y a également des termes métaphoriques comme « enlever», « faire passer », « éponger » et « nettoyer le péché », ou encore « ne plus s'en souvenir ». Sujet de l'acte du pardon est soit l'homme soit Dieu. Le thème du pardon est étroitement lié à celui de la transgression des normes et lois de la société comme de la religion de l'Ancien Israël. Les transgressions graves sont en principe impardonnables : elles créent une sphère du mal qui affecte tout l'environnement et peut entraîner des maladies, des incidents malencontreux, etc. En principe, cet effet perdure et ne cesse pas automatiquement, sauf si la transgression est sanctionnée d'une manière adéquate. Les sanctions se font selon les principes de la compensation, de la restitution et de la prévention : dans une ancienne collection de lois, le Code d'Alliance, le meurtre a ainsi pour conséquence la mise à mort de l'auteur du délit (cf. Ex 21,12) et le boeuf volé doit être restitué cinq fois (cf. Ex 21,37). Pour certains cas de transgressions, et sous certaines conditions, il y avait cependant des possibilités de protéger le délinquant et de substituer ou de réduire une sanction sévère prévue, voire d'y renoncer complètement. Cet article donne tout d'abord un aperçu du pardon accordé par l'homme et résume dans une deuxième partie les conceptions concernant l'arbitrage et le pardon de Dieu.
Resumo:
Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is, however, technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString). The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected to RNA sequencing (RNA-seq). Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.
Resumo:
BACKGROUND: The counting of poorly differentiated clusters of 5 or more cancer cells lacking a gland-like structure in a tumor mass has recently been identified among the histological features predictive of poor prognosis in colorectal cancer. MAIN BODY: Poorly differentiated clusters can easily be recognized in the histological sections of colorectal cancer routinely stained with haematoxylin and eosin. Despite some limitations related to specimen fragmentation, counting can also be assessed in endoscopic biopsies. Based on the number of poorly differentiated clusters that appear under a microscopic field of a ×20 objective lens (i.e., a microscopic field with a major axis of 1 mm), colorectal cancer can be graded into malignancies as follows: tumors with <5 clusters as grade 1, tumors with 5 to 9 clusters as grade 2, and tumors with ≥10 clusters as grade 3. High poorly differentiated cluster counts are significantly associated with peri-neural and lympho-vascular invasion, the presence of nodal metastases or micrometastases, as well as shorter overall and progression free survival to colorectal cancer. CONCLUSION: The morphological aspects and clinical relevance of poorly differentiated clusters counting in colorectal cancer are discussed in this review.
Resumo:
We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s "all-out" sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; "fast" instruction) and maximal (~5 s; "hard" instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, -50, -100, and -200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P < 0.05) sprint decrement score and a shorter (P < 0.05) cumulated distance covered over the eight sprints occurred in HA (-8 ± 4% and 178 ± 11 m) but not in LA (-7 ± 3% and 181 ± 10 m) compared to NM (-5 ± 2% and 183 ± 9 m). Compared to NM (-9 ± 7%), a larger (P < 0.05) reduction in MVC torque occurred post-exercise in HA (-14 ± 9%) but not in LA (-12 ± 7%), with no difference between NM and LA (P > 0.05). Irrespectively of condition (P > 0.05), peak RTD (-6 ± 11%; P < 0.05), and normalized peak RMS activity for VL (-8 ± 11%; P = 0.07) and RF (-14 ± 11%; P < 0.01) muscles were reduced post-exercise, whereas reductions (P < 0.05) in absolute RTD occurred within the 0-100 (-8 ± 9%) and 0-200 ms (-10 ± 8%) epochs after contraction onset. After normalization to MVC torque, there was no difference in RTD values. Additionally, the EMG rise for VL muscle was similar (P > 0.05), whereas it increased (P < 0.05) for RF muscle during all epochs post-exercise, independently of the conditions. In summary, alteration in repeated-sprint ability and post-exercise MVC decrease were greater at high altitude than in normoxia or at low altitude. However, the post-exercise alterations in RTD were similar between normoxia and low-to-high hypoxia.
Resumo:
Apart from its role as a flow generator for ventilation the diaphragm has a circulatory role. The cyclical abdominal pressure variations from its contractions cause swings in venous return from the splanchnic venous circulation. During exercise the action of the abdominal muscles may enhance this circulatory function of the diaphragm. Eleven healthy subjects (25 ± 7 year, 70 ± 11 kg, 1.78 ± 0.1 m, 3 F) performed plantar flexion exercise at ~4 METs. Changes in body volume (ΔVb) and trunk volume (ΔVtr) were measured simultaneously by double body plethysmography. Volume of blood shifts between trunk and extremities (Vbs) was determined non-invasively as ΔVtr-ΔVb. Three types of breathing were studied: spontaneous (SE), rib cage (RCE, voluntary emphasized inspiratory rib cage breathing), and abdominal (ABE, voluntary active abdominal expiration breathing). During SE and RCE blood was displaced from the extremities into the trunk (on average 0.16 ± 0.33 L and 0.48 ± 0.55 L, p < 0.05 SE vs. RCE), while during ABE it was displaced from the trunk to the extremities (0.22 ± 0.20 L p < 0.001, p < 0.05 RCE and SE vs. ABE respectively). At baseline, Vbs swings (maximum to minimum amplitude) were bimodal and averaged 0.13 ± 0.08 L. During exercise, Vbs swings consistently increased (0.42 ± 0.34 L, 0.40 ± 0.26 L, 0.46 ± 0.21 L, for SE, RCE and ABE respectively, all p < 0.01 vs. baseline). It follows that during leg exercise significant bi-directional blood shifting occurs between the trunk and the extremities. The dynamics and partitioning of these blood shifts strongly depend on the relative predominance of the action of the diaphragm, the rib cage and the abdominal muscles. Depending on the partitioning between respiratory muscles for the act of breathing, the distribution of blood between trunk and extremities can vary by up to 1 L. We conclude that during exercise the abdominal muscles and the diaphragm might play a role of an "auxiliary heart."