222 resultados para Adaptive Immunity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notre système immunitaire joue un rôle important pour la protection envers les maladies infectieuses. Au cours d'une réponse à une infection primaire, des cellules B et des cellules T spécifiques, dirigées contre le pathogène en question, sont générées et certaines d'entre elles deviennent des cellules dites mémoires. Leur fonction est de nous protéger contre une nouvelle infection avec le même pathogène, une infection secondaire. Dans certaines situations, comme c'est par exemple le cas avec la grippe, les pathogènes ne sont pas toujours complètement identiques et les cellules mémoires ne sont pas à même d'assurer leur rôle protecteur et d'empêcher une réinfection. Pourtant, on ne sait à l'heure actuelle que très peu comment une immunité acquise, mais non protectrice, influence le développement d'une réponse immunitaire ultérieure. Dans la première partie de cette thèse, nous avons étudié comment les cellules T mémoires cytotoxiques altèrent la réponse de cellules T cytotoxiques nouvellement induites. Au cours d'une réaction immunitaire dirigée contre une infection primaire, un vaste répertoire de lymphocytes T est créé, constitué de cellules T possédant divers degrés d'affinité pour le pathogène. Lors d'une infection secondaire, seules les cellules T ayant une forte affinité pour le pathogène participent à la réponse. Nous avons pu démontrer que ce phénomène de restriction du répertoire des cellules T est principalement causé par les cellules T mémoires qui sont à même de reconnaître un antigène pathogénique présent dans les deux infections. Dans un deuxième projet, nous avons étudié comment l'absence de PTPN2 influence la réponse des cellules T. Chez l'homme, une mutation dans le gène de PTPN2 est associée à des maladies auto-immunes et résulte en une activité réduite de cette phosphatase dans les lymphocytes T. Nous avons montré que la baisse d'activité de la phosphatase PTNP2 conduit à une meilleure expansion des cellules T ayant une qualité comparable à des cellules T auto-antigène spécifiques. De plus, nous avons observé que la survie de ces cellules T effectues ayant une phosphatase diminuée est nettement améliorée. Cela peut conduire à une réponse immunitaire plus efficace ou, éventuellement, à une pathologie auto-immune plus grave. En outre, nos résultats montrent qu'en manipulant l'activité de cette phosphatase, il est possible d'augmenter l'efficacité du transfert des cellules T dans un hôte receveur. Un tel transfert de cellules T est pratiqué chez des patients atteints de tumeurs. Nos travaux suggèrent que la manipulation de la phosphatase PTPN2 pourrait donc représenter une approche thérapeutique novatrice et prometteuse. -- Notre système immunitaire joue un rôle important pour la protection contre les maladies. Les cellules T CD8+ ont une importance primordiale pour le contrôle d'infections primaires causées par des virus ou bactéries, mais également contre certaines tumeurs. Par conséquent, mieux comprendre les exigences nécessaires à l'induction de bonnes réponses des cellules T CD8 pourrait nous permettre de construire des vaccins contre les pathogènes contre lesquels nous n'avons pour l'instant pas de vaccins mais aussi d'améliorer les réactions immunitaires dirigées anti-tumorales. Dans la première partie de cette thèse, nous avons étudié l'influence qu'une immunité préexistante a sur la réponse des cellules T CD8. Nous sommes souvent exposés à des pathogènes qui sont similaires mais pas identiques à ceux que nous avons rencontrés auparavant. De telles infections hétérologues ne sont pas l'objet de beaucoup d'études et certains exemples indiquent même qu'une immunité préexistante partielle peut mener à une aggravation de la maladie. Nous avons étudié le répertoire des lymphocytes T CD8 qui sont générés lors d'une rencontre avec un nouvel antigène, et ce en comparant infection primaire et secondaire. En utilisant le modèle expérimental d'infections à Listeria monocytogenes, nous avons pu montrer que lors d'une infection primaire, un répertoire diversifié comprenant des cellules T CD8 de forte et faible affinité est constitué. Au contraire, dans le cas d'une infection secondaire, le répertoire des cellules T est fortement limité et seulement les lymphocytes T de forte affinité sont impliqués dans la réponse immunitaire. Nous avons pu démontrer que ces Rangements sont provoqués par des cellules T CD8 mémoires capables de reconnaître un antigène présent dans les deux infections. Cette augmentation du seuil d'activation des cellules effectrices est majoritairement causée par les lymphocytes T CD8 mémoires non transférables. Ces observations indiquent que les vaccins visant à induire des cellules T anti-tumorales de faible affinité seraient inefficaces si le vaccin contient des épitopes contre lesquels il existe une mémoire immunologique. Les réponses immunitaires conduites par les cellules T contre les antigènes tumoraux dépendent des cellules T CD8 de faible réactivité contre les antigènes tumoraux puisque les cellules à forte réactivité sont éliminées par les mécanismes de tolérance. Nous basant sur l'existence dans la littérature de preuves indiquant que PTPN2 influence la réponse des cellules T de faible affinité, nous nous sommes intéressés à comprendre comment PTPN2 impacte les réponses des cellules T CD8 en général. Nous avons remarqué que des cellules T CD8 déficientes en PTPN2 exhibent une meilleure capacité à proliférer suite à une faible ou courte stimulation du récepteur des lymphocytes T. La phase effectrice est prolongée et la contraction retardée résultant ainsi à globalement plus de cellules effectrices. Ce phénomène est également accompagné d'une meilleure survie des cellules effectrices de différentiation terminale. Une fois transférées dans un nouvel hôte receveur, les cellules effectrices terminales KLRG1+CD127- déficientes en phosphatase PTPN2 peuvent survivre et se transformer en cellules mémoires CD127+ fonctionnelles. De façon inattendue, nous avons découvert que l'élimination de PTPN2 améliore l'efficacité du transfert et la formation des cellules mémoires ainsi que leur capacité protectrice. Manipuler l'activité de cette phosphatase apparaît donc comme une approche intéressante et prometteuse pour la thérapie cellulaire par transfert adoptif de lymphocytes T. Nos observations montrent que la manipulation d'un facteur intrinsèque, l'absence de PTPN2, peut, dans certaines circonstances, améliorer la réponse des cellules T. Une meilleure connaissance des mécanismes contrôlant la réponse des lymphocytes T CD8 pourrait donc permettre la manipulation de ces derniers et conduire à des réponses immunitaires plus vigoureuses. Si ces réponses sont déclenchées par l'utilisation de vaccins, il est nécessaire de considérer l'historique d'une exposition préalable à des agents pathogènes ou à des vaccins puisque celle-ci peut, comme nous l'avons démontré, influencer le répertoire des cellules T recrutées dans la réponse immunitaire et, par conséquent, modifier l'aptitude de notre système immunitaire à faire face à une infection. -- Our immune system plays an important role in the protection from disease. CD8 T cells are critical for the control of primary infections with most viruses and certain bacteria as well as against some tumors. Therefore, better knowledge of CD8 T cell responses might enable us to generate vaccines against pathogens for which currently no vaccines are available or to improve anti-tumor immune responses. In the first part of this thesis we addressed the issue how previously acquired immunity impacts on the response of CD8 T cells. We are often exposed to pathogens that are related but not identical to the previously encountered ones. Such heterologous infections are not well studied and there are some indications that partial pre-existing immunity may in some cases even lead to an enhancement of disease. We specifically studied the T cell repertoire of CD8 T cells that are responding to a newly encountered antigen in secondary compared to primary infections. Using the experimental model of Listeria monocytogenes infections, we showed that in primary infections a wide repertoire including high and low affinity CD8 T cells is recruited into the immune response. In contrast to this, in secondary infections, the T cell repertoire is severely restricted and only T cells of high affinity are responding. We were able to pinpoint this difference to the presence of memory CD8 T cells that recognize an antigen that is shared between the two subsequent infections. This increase in the activation threshold was most effectively mediated via non-transferable memory CD8 T cells. This would argue that vaccines targeting low affinity tumor-specific T cells would fail if the vaccine contains previously encountered CD8 T cell epitopes. T cell mediated immune responses to tumor antigen rely often on T cells which weakly react to tumor antigen as high affinity T cells are eliminated by tolerance mechanisms. Following indication in the literature that PTPN2 impacts on the response of such weakly antigen-reactive T cells, we investigated how PTPN2 impacts in general the response of CD8 T cells. We observed that CD8 T cells lacking PTPN2 show an enhanced expansion following weak or short-term T cell receptor stimulation. The effector phase is prolonged and contraction delayed thus resulting in overall more effector cells. This is accompanied by a better survival of terminal effector cells. When transferred into new recipients, KLRG1+CD127- terminal effector cells lacking PTPN2 can survive and convert into CD127+ functional memory cells. Surprisingly, we discovered that elimination of PTPN2 enhances the transfer efficacy and formation of memory cells as well as the protective capacity. Targeting PTPN2 might thus be a promising approach for adoptive T cell therapy. Our observations show how the manipulation of an intrinsic factor, the absence of PTPN2, can enhance T cell responses under certain circumstances. A better understanding of underlying mechanisms for the control of CDS T cell responses might enable the manipulation of these and allow for more powerful responses. If these responses are induced through vaccines it is imperative that the previous history of exposure to pathogens or vaccines is considered as it can, as we have shown in this thesis, influence the recruited T cell repertoire and thus possibly the ability to handle the infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Transmission of mucosal pathogens relies on their ability to bind to the surfaces of epithelial cells, to cross this thin barrier, and to gain access to target cells and tissues, leading to systemic infection. This implies that pathogen-specific immunity at mucosal sites is critical for the control of infectious agents using these routes to enter the body. Although mucosal delivery would ensure the best onset of protective immunity, most of the candidate vaccines are administered through the parenteral route. OBJECTIVE: The present study evaluates the feasibility of delivering the chemically bound p24gag (referred to as p24 in the text) HIV antigen through secretory IgA (SIgA) in nasal mucosae in mice. RESULTS: We show that SIgA interacts specifically with mucosal microfold cells present in the nasal-associated lymphoid tissue. p24-SIgA complexes are quickly taken up in the nasal cavity and selectively engulfed by mucosal dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-positive dendritic cells. Nasal immunization with p24-SIgA elicits both a strong humoral and cellular immune response against p24 at the systemic and mucosal levels. This ensures effective protection against intranasal challenge with recombinant vaccinia virus encoding p24. CONCLUSION: This study represents the first example that underscores the remarkable potential of SIgA to serve as a carrier for a protein antigen in a mucosal vaccine approach targeting the nasal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.