199 resultados para sinusoidal cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent years have seen so-called natural killer T (NKT) cells emerge as important regulators of the immune response. The existence of NKT-cell subsets, and other types of T cell that resemble NKT cells, is an ongoing source of confusion in the literature. This perspective article seeks to clarify which cells fall under the NKT-cell umbrella, and which might be best considered as separate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) are antigen presenting cells with an unique ability to induce primary immune responses. Different DCs subsets with an intrinsic capacity to polarise Tcells have been described: myeloid (Th1) and lymphoid (Th2). Plasticity is defined as DCs capacity to polarise T cells independent of the DCs origin. We investigated the potential role played by oxidants such as superoxide anion (·O2-), in the plasticity of DCs, measured by the induction of a specific DCs subset, cytokine release and antigen presentation. Furthermore, we are interested in the amplification of immune response analysed by the exosomes production after oxidative stress and LPS stimulation. Recently, we have demonstrated that exposure of cells to superoxide anions resulted in the activation of DC2 profile. To analyse the role of oxidative stress in DCs subsets, we used BDCA-1 and BDCA-2 antibodies, which identify myeloid and plasmacytoid DCs respectively. Freshly isolated monocytes have shown to be BDCA-1-, but BDCA-2+ populations. During 6 days culture up-regulation of BDCA-1, but a down-regulation of BDCA-2 were observed, giving a clear myeloid population. When DC were stimulated with superoxide anions or LPS, we have observed that both down regulate the expression of BDCA-1 when compared to immature DC. Antigen presentation was markedly altered according to the periodicity used, and antigens and oxidants exposures. Using DCs trapped in collagen "matrix" after LPS activation we were able to quantify DCs-exosomes (small membrane vesicles ~50-100 nm in diameter) by reconstruction pictures in three dimensions. Using double vital staining we have found that exosomes from activated DCs can fuse with the membrane of resting DCs. Understanding the capacity of DCs to integrate external signals we will be able to unravel and control Tcells-polarisation triggering a specific immune response or tolerance. We will be able also to understand the amplification role of DCs-exosomes in remote not yet activated DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Ipilimumab is a monoclonal antibody that blocks the immune-inhibitory interaction between CTL antigen 4 (CTLA-4) and its ligands on T cells. Clinical trials in cancer patients with ipilimumab have shown promising antitumor activity, particularly in patients with advanced melanoma. Often, tumor regressions in these patients are correlated with immune-related side effects such as dermatitis, enterocolitis, and hypophysitis. Although these reactions are believed to be immune-mediated, the antigenic targets for the cellular or humoral immune response are not known. EXPERIMENTAL DESIGN: We enrolled patients with advanced melanoma in a phase II study with ipilimumab. One of these patients experienced a complete remission of his tumor. The specificity and functional properties of CD8-positive T cells in his peripheral blood, in regressing tumor tissue, and at the site of an immune-mediated skin rash were investigated. RESULTS: Regressing tumor tissue was infiltrated with CD8-positive T cells, a high proportion of which were specific for Melan-A. The skin rash was similarly infiltrated with Melan-A-specific CD8-positive T cells, and a dramatic (>30-fold) increase in Melan-A-specific CD8-positive T cells was apparent in peripheral blood. These cells had an effector phenotype and lysed Melan-A-expressing tumor cells. CONCLUSIONS: Our results show that Melan-A may be a major target for both the autoimmune and antitumor reactions in patients treated with anti-CTLA-4, and describe for the first time the antigen specificity of CD8-positive T cells that mediate tumor rejection in a patient undergoing treatment with an anti-CTLA-4 antibody. These findings may allow a better integration of ipilimumab into other forms of immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.