221 resultados para reliability measurement
Resumo:
Introduction Occupational therapists could play an important role in facilitating driving cessation for ageing drivers. This, however, requires an easy-to-learn, standardised on-road evaluation method. This study therefore investigates whether use of P-drive' could be reliably taught to occupational therapists via a short half-day training session. Method Using the English 26-item version of P-drive, two occupational therapists evaluated the driving ability of 24 home-dwelling drivers aged 70 years or over on a standardised on-road route. Experienced driving instructors' on-road, subjective evaluations were then compared with P-drive scores. Results Following a short half-day training session, P-drive was shown to have almost perfect between-rater reliability (ICC2,1=0.950, 95% CI 0.889 to 0.978). Reliability was stable across sessions including the training phase even if occupational therapists seemed to become slightly less severe in their ratings with experience. P-drive's score was related to the driving instructors' subjective evaluations of driving skills in a non-linear manner (R-2=0.445, p=0.021). Conclusion P-drive is a reliable instrument that can easily be taught to occupational therapists and implemented as a way of standardising the on-road driving test.
Resumo:
"This paper will discuss the major developments in the area of fingerprint" "identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allow- ing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice domi- nated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion" "of the uniqueness of fingerprints or the opinion delivered ispe dixit."
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.
Resumo:
Issue ownership means that some parties are considered by the public at large as being more able to deal with, or more attentive to, certain issues. The theory has been used to explain both party behaviour - parties are expected to focus on owned issues - and voter behaviour - when a voter considers a party to own an issue, this affects the odds of voting for that party. The purpose of this article is, first, to provide a look backward at the existing research through a literature review of the studies that were conducted in the past decade-and-a-half. Secondly, it takes stock of the current conceptualisation and argues that issue ownership is a multidimensional concept. Thereafter the article discusses how this multidimensionality affects both the role of issue ownership in voter and in party behaviour. Finally, the article outlines a number of shortcomings of the extant literature and discusses potential avenues for future research.
Resumo:
Reaching a consensus in terms of interchangeability and utility (i.e., disease detection/monitoring) of a medical device is the eventual aim of repeatability and agreement studies. The aim of the tolerance and relative utility indices described in this report is to provide a methodology to compare change in clinical measurement noise between different populations (repeatability) or measurement methods (agreement), so as to highlight problematic areas. No longitudinal data are required to calculate these indices. Both indices establish a metric of least to most effected across all parameters to facilitate comparison. If validated, these indices may prove useful tools when combining reports and forming the consensus required in the validation process for software updates and new medical devices.
Resumo:
The evaluation of children's statements of sexual abuse cases in forensic cases is critically important and must and reliable. Criteria-based content analysis (CBCA) is the main component of the statement validity assessment (SVA), which is the most frequently used approach in this setting. This study investigated the inter-rater reliability (IRR) of CBCA in a forensic context. Three independent raters evaluated the transcripts of 95 statements of sexual abuse. IRR was calculated for each criterion, total score, and overall evaluation. The IRR was variable for the criteria, with several being unsatisfactory. But high IRR was found for the total CBCA scores (Kendall's W = 0.84) and for overall evaluation (Kendall's W = 0.65). Despite some shortcomings, SVA remains a robust method to be used in the comprehensive evaluation of children's statements of sexual abuse in the forensic setting. However, the low IRR of some CBCA criteria could justify some technical improvements.
Resumo:
This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.
Resumo:
Although brand authenticity is gaining increasing interest in consumer behavior research and managerial practice, literature on its measurement and contribution to branding theory is still limited. This article develops an integrative framework of the concept of brand authenticity and reports the development and validation of a scale measuring consumers' perceived brand authenticity (PBA). A multi-phase scale development process resulted in a 15-item PBA scale measuring four dimensions: credibility, integrity, symbolism, and continuity. This scale is reliable across different brands and cultural contexts. We find that brand authenticity perceptions are influenced by indexical, existential, and iconic cues, whereby some of the latters' influence is moderated by consumers' level of marketing skepticism. Results also suggest that PBA increases emotional brand attachment and word-of-mouth, and that it drives brand choice likelihood through self-congruence for consumers high in self-authenticity.
Resumo:
The functional method is a new test theory using a new scoring method that assumes complexity in test structure, and thus takes into account every correlation between factors and items. The main specificity of the functional method is to model test scores by multiple regression instead of estimating them by using simplistic sums of points. In order to proceed, the functional method requires the creation of hyperspherical measurement space, in which item responses are expressed by their correlation with orthogonal factors. This method has three main qualities. First, measures are expressed in the absolute metric of correlations; therefore, items, scales and persons are expressed in the same measurement space using the same single metric. Second, factors are systematically orthogonal and without errors, which is optimal in order to predict other outcomes. Such predictions can be performed to estimate how one would answer to other tests, or even to model one's response strategy if it was perfectly coherent. Third, the functional method provides measures of individuals' response validity (i.e., control indices). Herein, we propose a standard procedure in order to identify whether test results are interpretable and to exclude invalid results caused by various response biases based on control indices.