251 resultados para metabolic substrates
Resumo:
Differences in efficacy and safety of drugs among patients are a recognized problem in pharmacotherapy. The reasons are multifactorial and, therefore, the choice of a drug and its dosage for a particular patient based on different clinical and genetic factors is suggested to improve the clinical outcome. Four drugs are currently used for the treatment of Alzheimer's disease: three acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) and the N-methyl-D-aspartate-antagonist memantine. For these drugs, a high interindividual variability in plasma levels was observed, which might influence the response to treatment. The main objective of this thesis was to provide a better understanding of clinical and genetic factors affecting the plasma levels of antidementia drugs. Furthermore, the relationship between plasma levels, genetic variations and side effects was assessed. For this purpose, a pharmacogenetic study was conducted including 300 patients from a naturalistic clinical setting. Analytical methods for the simultaneous measurement of antidementia drugs in plasma have been developed and validated using liquid chromatography methods coupled with mass spectrometry detection. Presently, these methods are used in the therapeutic drug monitoring service of our laboratory. The routine use of therapeutic drug monitoring for antidementia drugs cannot yet be recommended with the available data, but it may be beneficial for some patients in special clinical cases such as insufficient treatment response, side effects or drug interactions. Donepezil and galantamine are extensively metabolized by the liver enzymes cytochromes P450 (CYP) 2D6 and 3A and are substrates of the drug transporter P-glycoprotein. The relationship of variations in genes affecting the activity of these metabolic enzymes and drug transporter (CYP2D6, CYP3A, POR, NR1I2, ABCB1) with donepezil and galantamine plasma levels was investigated. The CYP2D6 genotype appeared to be the major genetic factor involved in the pharmacokinetics of these two drugs. Thus, CYP2D6 poor metabolizers demonstrated significantly higher drug plasma levels than extensive metabolizers. Additionally, in the donepezil study population, the frequency of side effects was significantly increased in poor metabolizers. Lower donepezil plasma levels were observed in ultra rapid metabolizers, which might expose those patients to the risk of non-response. Memantine is mainly eliminated unchanged by the kidney, with implication of tubular secretion by renal transporters. A population pharmacokinetic model was developed to quantify the effects of clinical factors and genetic variations in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1), and nuclear receptors (NR1I2, NR1I3, PPARG) involved in transporter expression, on memantine plasma levels. In addition to the renal function and gender, a genetic variation in the nuclear receptor Pregnane-X-Receptor (NR1I2) significantly affected memantine elimination. These findings suggest that an individualized therapy approach for antidementia drugs, taking into account clinical characteristics and genetic background of a patient, might increase efficacy and safety of the treatment. - Les différences interindividuelles dans l'efficacité et la tolérance des médicaments sont un problème connu en pharmacothérapie. Les raisons sont multiples, et le choix du médicament et de la dose, basé sur des facteurs cliniques et génétiques spécifiques au patient, peut contribuer à améliorer la réponse clinique. Quatre médicaments sont couramment utilisés dans le traitement de la maladie d'Alzheimer : trois inhibiteurs de l'acétylcholinestérase (donépézil, galantamine, rivastigmine) et un antagoniste du récepteur N-méthyl-D-aspartate, la mémantine. Une forte variabilité interindividuelle dans les taux plasmatiques de ces quatre composés a été observée, ce qui pourrait influencer la réponse au traitement. L'objectif principal de ce travail de thèse est de mieux comprendre les facteurs cliniques et génétiques influençant les taux des médicaments pro-cognitifs. En outre, des associations entre les taux, la variabilité génétique et les effets secondaires ont été recherchées. Dans ce but, 300 patients sous traitement avec un médicament pro-cognitif ont été recrutés pour une étude pharmacogénétique. Des méthodes de dosage simultané de médicaments pro-cognitifs par chromatographie liquide couplée à la spectrométrie de masse ont été développées et validées. Ces méthodes sont actuellement utilisées dans le service de suivi thérapeutique de notre unité. Malgré le fait qu'un suivi des taux sanguins des pro-cognitifs ne puisse pas encore être recommandé en routine, un dosage peut être utile dans des cas cliniques spécifiques, comme une réponse insuffisante, une intolérance ou une interaction médicamenteuse. Le donépézil et la galantamine sont fortement métabolisés par les cytochromes P450 (CYP) 2D6 et 3A, et sont également substrats du transporteur P-glycoprotéine. Les associations entre les polymorphismes génétiques de ces enzymes, cofacteur, récepteur nucléaire et transporteur (CYP2D6, CYP3A, POR, NR1I2, ABCB1) et les taux de donépézil et de galantamine ont été étudiées. Le génotype du CYP2D6 a été montré comme le facteur génétique majeur impliqué dans la pharmacocinétique de ces deux médicaments. Ainsi, les métaboliseurs déficients du CYP2D6 ont démontré des taux plasmatiques significativement plus élevés comparé aux bons métaboliseurs. De plus, dans la population traitée avec le donépézil, la fréquence des effets secondaires était plus élevée chez les métaboliseurs déficients. Des taux plasmatiques bas ont été mesurés chez les métaboliseurs ultra-rapides traités avec le donépézil, ce qui pourrait être un facteur de risque à une non-réponse au traitement. La mémantine est principalement éliminée sous forme inchangée par les reins, et partiellement par sécrétion tubulaire grâce à des transporteurs rénaux. Un modèle de cinétique de population a été développé pour quantifier les effets des différents facteurs cliniques et de la variabilité génétique des transporteurs rénaux (SLC22A1/2/5, SLC47A1, ABCB1) et des récepteurs nucléaires (NR1I2, NR1I3, PPARG, impliqués dans l'expression des transporteurs) sur les taux plasmatiques de mémantine. En plus de la fonction rénale et du genre, une variation génétique dans le récepteur nucléaire Pregnane-X-Receptor (NR1I2) a montré une influence significative sur l'élimination de la mémantine. Ces résultats suggèrent qu'une approche thérapeutique individualisée, prenant en compte des facteurs cliniques et génétiques du patient, pourrait améliorer l'efficacité et la sécurité du traitement pro-cognitif.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
Aim: The obesity epidemic has increased the number of obese patients admitted to the ICU. In vitro studies suggest that adipose tissue response to inflammation is enhanced: in vivo data are not conclusive yet. The aim of this study was to test the physiologic response of healthy obese subjects to a standardized intravenous LPS challenge.Methods: Prospective single-blind, randomized, cross-over study in eight subjects (four men, four women), aged 34 +/- 7 years, BMI 34.7 +/- 4.2, without glucose intolerance and lipid abnormalities, testing the impact of intravenous LPS (2 ng kg(-1) of actual body weight) versus placebo.Results: Temperature, hemodynamic variables, indirect calorimetry and blood samples (TNF-alpha, IL-6, stress hormones, hs-CRP) were collected. After LPS temperature, heart rate. TNF-alpha and IL-6 concentrations and stress hormones (cortisol and glucagon) increased significantly, with maximal responses between 120 and 240 min after the injection. The pattern, the timing and the magnitude of change were similar to those observed in lean subjects.Conclusion: This study shows that healthy obese subjects have a similar response pattern to intravenous LPS as described in lean subjects.
Resumo:
Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.
Resumo:
Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI) in 20 healthy participants. The latter saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task). fMRI results revealed higher activity in regions associated with emotion (e.g., the insula), motor function (e.g., motor cortex), and theory of mind (e.g., [pre]cuneus) during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression (eSUP) produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and eSUP modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.
Resumo:
AIM: The resting metabolic rate (RMR) varies among pregnant women. The factors responsible for this variability are unknown. This study aimed to assess the influence of the prepregnancy body mass index (BMI) on the RMR during late pregnancy. METHODS: RMR, height, weight, and total (TEE) and activity (AEE) energy expenditures were measured in 46 healthy women aged 31 ± 5 years (mean ± SD) with low (<19.8), normal (19.8-26.0), and high (>26.0) prepregnancy BMI at 38.2 ± 1.5 weeks of gestation (t(gest)) and 40 ± 7 weeks postpartum (t(post)) (n = 27). RESULTS: The mean t(gest) RMR for the low-, normal-, and high-BMI groups was 1,373, 1,807, and 2,191 kcal/day, respectively (p = 0.001). The overall mean t(gest) RMR was 316 ± 183 kcal/day (21%), higher than the overall mean t(post) value and this difference was correlated with gestational weight gain (r = 0.78, p < 0.001). The scaled metabolic rate by allometry (RMR/kilograms⁰·⁷³) was similar in the low-, normal-, and high-BMI groups, respectively (p = 0.45). Changes in t(gest) TEE closely paralleled changes in t(gest) RMR (r = 0.84, p < 0.001). AEE was similar among the BMI groups. CONCLUSION: The RMR is significantly increased in the third trimester of pregnancy. The absolute gestational RMR is higher in women with high prepregnancy BMI due to increased body weight. The scaled metabolic rate (RMR/kilograms⁰·⁷³) is similar among the BMI groups of pregnant women.
Resumo:
Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.
Resumo:
The feeling of guilt is a complex mental state underlying several human behaviors in both private and social life. From a psychological and evolutionary viewpoint, guilt is an emotional and cognitive function, characterized by prosocial sentiments, entailing specific moral believes, which can be predominantly driven by inner values (deontological guilt) or by more interpersonal situations (altruistic guilt). The aim of this study was to investigate whether there is a distinct neurobiological substrate for these two expressions of guilt in healthy individuals. We first run two behavioral studies, recruiting a sample of 72 healthy volunteers, to validate a set of stimuli selectively evoking deontological and altruistic guilt, or basic control emotions (i.e., anger and sadness). Similar stimuli were reproduced in a event-related functional magnetic resonance imaging (fMRI) paradigm, to investigate the neural correlates of the same emotions, in a new sample of 22 healthy volunteers. We show that guilty emotions, compared to anger and sadness, activate specific brain areas (i.e., cingulate gyrus and medial frontal cortex) and that different neuronal networks are involved in each specific kind of guilt, with the insula selectively responding to deontological guilt stimuli. This study provides evidence for the existence of distinct neural circuits involved in different guilty feelings. This complex emotion might account for normal individual attitudes and deviant social behaviors. Moreover, an abnormal processing of specific guilt feelings might account for some psychopathological manifestation, such as obsessive-compulsive disorder and depression.
Resumo:
In recent years, considerable research has focused on the biological effect of endocrine-disrupting chemicals. Bisphenol A (BPA) has been implicated as an endocrine-disrupting chemical (EDC) due to its ability to mimic the action of endogenous estrogenic hormones. The aim of this study was to assess the effect of perinatal exposure to BPA on cerebral structural development and metabolism after birth. BPA (1mg/l) was administered in the drinking water of pregnant dams from day 6 of gestation until pup weaning. At postnatal day 20, in vivo metabolite concentrations in the rat pup hippocampus were measured using high field proton magnetic resonance spectroscopy. Further, brain was assessed histologically for growth, gross morphology, glial and neuronal development and extent of myelination. Localized proton magnetic resonance spectroscopy ((1)H MRS) showed in the BPA-exposed rat a significant increase in glutamate concentration in the hippocampus as well as in the Glu/Asp ratio. Interestingly these two metabolites are metabolically linked together in the malate-aspartate metabolic shuttle. Quantitative histological analysis revealed that the density of NeuN-positive neurons in the hippocampus was decreased in the BPA-treated offspring when compared to controls. Conversely, the density of GFAP-positive astrocytes in the cingulum was increased in BPA-treated offspring. In conclusion, exposure to low-dose BPA during gestation and lactation leads to significant changes in the Glu/Asp ratio in the hippocampus, which may reflect impaired mitochondrial function and also result in neuronal and glial developmental alterations.
Resumo:
There has been much concern regarding the role of dietary fructose in the development of metabolic diseases. This concern arises from the continuous increase in fructose (and total added caloric sweeteners consumption) in recent decades, and from the increased use of high-fructose corn syrup (HFCS) as a sweetener. A large body of evidence shows that a high-fructose diet leads to the development of obesity, diabetes, and dyslipidemia in rodents. In humans, fructose has long been known to increase plasma triglyceride concentrations. In addition, when ingested in large amounts as part of a hypercaloric diet, it can cause hepatic insulin resistance, increased total and visceral fat mass, and accumulation of ectopic fat in the liver and skeletal muscle. These early effects may be instrumental in causing, in the long run, the development of the metabolic syndrome. There is however only limited evidence that fructose per se, when consumed in moderate amounts, has deleterious effects. Several effects of a high-fructose diet in humans can be observed with high-fat or high-glucose diets as well, suggesting that an excess caloric intake may be the main factor involved in the development of the metabolic syndrome. The major source of fructose in our diet is with sweetened beverages (and with other products in which caloric sweeteners have been added). The progressive replacement of sucrose by HFCS is however unlikely to be directly involved in the epidemy of metabolic disease, because HFCS appears to have basically the same metabolic effects as sucrose. Consumption of sweetened beverages is however clearly associated with excess calorie intake, and an increased risk of diabetes and cardiovascular diseases through an increase in body weight. This has led to the recommendation to limit the daily intake of sugar calories.
Resumo:
Metabolic syndrome has been associated with an increased risk of various cancers. A multicenter study conducted in Italy and Switzerland on 3,869 cases of breast cancer in post-menopause reported a relative risk of 1.75 in women with the metabolic syndrome, confirming the results of other smaller epidemiological studies.
Resumo:
Carnitine-free total parenteral nutrition (TPN) is claimed to result in a carnitine deficiency with subsequent impairment of fat oxidation. The present study was designed to evaluate the possible benefit of carnitine supplementation on postoperative fat and nitrogen utilization. Sixteen patients undergoing total esophagectomy were evenly randomized and received TPN without or with L-carnitine supplementation (74 mumol.kg-1.d-1) during 11 postoperative days. On day 11, a 4-h infusion of L-carnitine (125 mumol/kg) was performed in both groups. The effect of supplementation was evaluated by indirect calorimetry, N balance, and repeated measurements of plasma lipids and ketone bodies. Irrespective of continuous or acute supplementation, respiratory quotient and fat oxidation were similarly maintained throughout the study in both groups whereas N balance appeared to be more favorable without carnitine. We conclude that carnitine-supplemented TPN does not improve fat oxidation or promote N utilization in the postoperative phase.
Resumo:
La réponse métabolique de l'obèse apparemment « sainen situation d'agression aiguë (polytraumatisés, traumatisés crâniens, patients chirurgicaux, grands brûlés, opérations électives) ne se distingue pas ou peu de celle de l'individu non-obèse. Cependant, les complications médicales liées à l'agression (insuffisances respiratoire et cardiaque, bronchopneumonie, infections de plaies, thrombophlébites et embolies) demeurent plus importantes chez l'obèse morbide que chez l'individu de poids normal. Grâce à l'inflation de ses réserves énergétiques, l'obèse apparemment sain est avantagé, par rapport au sujet mince, au cours d'une agression nutritionnelle chronique telle que le jeûne prolongé. Le facteur fonctionnel limitant la survie dépend avant tout de la composition corporelle initiale et du degré d'adaptation métabolique (et comportementale) en particulier du degré de conservation de la masse maigre par rapport à la masse grasse. La mobilisation accrue de la masse grasse associée à la perte de poids chez l'obèse (par rapport à son homologue non-obèse) est favorable à une prolongation de la vie, car, en brûlant davantage de graisse corporelle, la part des protéines corporelles endogènes utilisée à des fins énergétiques est plus faible. Il s'ensuit chez l'obèse qu'un niveau de masse maigre critique pour la survie n'est atteint qu'après une réduction très marquée de ses réserves énergétiques. En revanche, le sujet mince perd davantage de masse maigre lors de l'amaigrissement et, par conséquent, son métabolisme de repos diminuera plus rapidement que celui du sujet obèse. Cela peut constituer un avantage énergétique évident en termes d'économie d'énergie consécutive à l'adaptation métabolique, mais un inconvénient majeur quant à la durée de la survie. The metabolic response of « apparently healthyobese individuals following acute injury (multiple trauma, head injury and surgical patients, extended burns, elective surgery) is not dramatically different from that of a non-obese individuals. However, the medical complications following the injury (respiratory and cardiac insufficiency, broncho-pneumonia, infections of wounds, trombophlebitis and embolism) are more prevalent in morbid obese patients than in individuals of normal body weight. Because of a large increase in their individuals energy store, "apparently healthy" obese individuals have an advantage over very lean subjects when exposed to a chronic nutritional aggression such as total fasting. The functional limiting factor for survival depends primarily on initial body composition and the magnitude of metabolic adaptation (including behavioral adaptation). The key factor is the extent to which the fat-free mass is maintained (versus to the fat mass) during weight loss. The increased proportion of body fat mobilized during weight loss in obese patients, compared with their non-obese counterparts, favors prolonged survival, because more adipose tissue is burned off, the fraction of body protein endogenously utilized for energy purpose individuals, is smaller. This implies that obese individuals do not reach a fat-free mass "critical" for their survival until their energy stores reach very low values. In contrast, lean subject tend to lose more fat-free mass during weight loss than obese subjects and, as a result, their energy expenditure drops more rapidly. This may offer a potential advantage in terms of energy economy (more energy saving) but a major disadvantage in terms of duration of survival.
Resumo:
BACKGROUND AND PURPOSE: The purpose of this study was to analyze whether fever control attenuates cerebral metabolic distress after aneurysmal subarachnoid hemorrhage (SAH). METHODS: Eighteen SAH patients, who underwent intracranial pressure (ICP) and cerebral microdialysis monitoring and were treated with induced normothermia for refractory fever (body temperature >or=38.3 degrees C, despite antipyretics), were studied. Levels of microdialysate lactate/pyruvate ratio (LPR) and episodes of cerebral metabolic crisis (LPR >40) were analyzed during fever and induced normothermia, at normal and high ICP (>20 mm Hg). RESULTS: Compared to fever, induced normothermia resulted in lower LPR (40+/-24 versus 32+/-9, P<0.01) and a reduced incidence of cerebral metabolic crisis (13% versus 5%, P<0.05) at normal ICP. During episodes of high ICP, induced normothermia was associated with a similar reduction of LPR, fewer episodes of cerebral metabolic crisis (37% versus 8%, P<0.01), and lower ICP (32+/-11 versus 28+/-12 mm Hg, P<0.05). CONCLUSIONS: Fever control is associated with reduced cerebral metabolic distress in patients with SAH, irrespective of ICP.
Resumo:
PURPOSE OF REVIEW: This special commentary addresses recent clinical reviews regarding appropriate nutrition and metabolic support in the critical care setting. RECENT FINDINGS: There are divergent approaches between North America and Europe for the use of early nutrition support and combined enteral nutrition and parenteral nutrition support possibly due to the commercial availability of specific parenteral nutrients. The advent of intensive insulin therapy has changed the landscape of metabolic support in the intensive care unit, and previous notions about infective risk of parenteral nutrition will need to be re-addressed. Patients with brain failure may benefit from an intensive insulin therapy with a blood glucose target that is higher than that used in patients without brain failure. Patients with heart failure may benefit from the addition of nutritional pharmacology that targets proximate oxidative pathophysiological pathways. Intradialytic parenteral nutrition may be viewed as another form of supplemental parenteral nutrition when enteral nutrition is insufficient in patients on hemodialysis in the intensive care unit. SUMMARY: It is proposed that intensive metabolic support be routinely implemented in the intensive care unit based on the following steps: intensive insulin therapy with an appropriate blood glucose target, nutrition risk assessment, early and if needed combined enteral nutrition and parenteral nutrition to target 20-25 kcal/kg/day and 1.2-1.5 g protein/kg/day, and nutritional and metabolic monitoring.