220 resultados para bio-optic modeling
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
OBJECTIVES: Blood pressures in persons of African descent exceed those of other racial/ethnic groups in the United States. Whether this trait is attributable to the genetic factors in African-origin populations, or a result of inadequately measured environmental exposures, such as racial discrimination, is not known. To study this question, we conducted a multisite comparative study of communities in the African diaspora, drawn from metropolitan Chicago, Kingston, Jamaica, rural Ghana, Cape Town, South Africa, and the Seychelles. METHODS: At each site, 500 participants between the age of 25 and 49 years, with approximately equal sex balance, were enrolled for a longitudinal study of energy expenditure and weight gain. In this study, we describe the patterns of blood pressure and hypertension observed at baseline among the sites. RESULTS: Mean SBP and DBP were very similar in the United States and South Africa in both men and women, although among women, the prevalence of hypertension was higher in the United States (24 vs. 17%, respectively). After adjustment for multiple covariates, relative to participants in the United States, SBP was significantly higher among the South Africans by 9.7 mmHg (P < 0.05) and significantly lower for each of the other sites: for example, Jamaica: -7.9 mmHg (P = 0.06), Ghana: -12.8 mmHg (P < 0.01) and Seychelles: -11.1 mmHg (P = 0.01). CONCLUSION: These data are consistent with prior findings of a blood pressure gradient in societies of the African diaspora and confirm that African-origin populations with lower social status in multiracial societies, such as the United States and South Africa, experience more hypertension than anticipated based on anthropometric and measurable socioeconomic risk factors.
Resumo:
We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.
Resumo:
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.
Resumo:
Background:Microcystic macular edema can occur after optic neuropathies of various etiologies, and is easily demonstrated by OCT. We report a cohort of patients with microcystic macular edema. Patients and Methods: All patients with optic neuropathy and microcystic macular edema were enrolled. Demographics, visual function, retinal angiographies and OCT parameters were studied. Results: Nineteen patients (23 eyes) exhibited microcystic macular edema: 10 men/9 women, aged 17-91 years. Etiologies of optic nerve atrophy were compressive (5), inflammatory (4), glaucoma (3), ischemic (3), trauma (2), degenerative (1), and hereditary (1). Median visual acuity was 4/10 (NLP-12/10). Fluorescein angiography showed no leakage. Topography of the microcystic macular edema correlated with near infrared images but with visual field defects in only 26 %. OCT parameters were all abnormal. Conclusions: Microcystic macular edema is a non-specific manifestation from an optic neuropathy of any etiology. The precise mechanism leading to microcystic macular edema remains unknown but trans-synaptic retrograde degeneration with Müller cells dysfunction is likely. Zusammenfassung Hintergrund: Das mikrozystische Makulaödem kann im Rahmen einer Optikusatrophie jeglicher Ätiologie auftreten und ist leicht mit dem OCT zu erkennen. Wir berichten über eine Patientenkohorte mit mikrozystischem Makulaödem. Patienten und Methoden: Alle Patienten mit einer Optikusneuropathie und einem mikrozystischen Makulaödem wurden in diese Studie eingeschlossen. Die Demografie, die Sehfunktion, die Netzhautangiografie und die OCT-Parameter wurden untersucht. Ergebnisse: Neunzehn Patienten (23 Augen) hatten ein mikrozystisches Makulaödem: 10 Männer/9 Frauen im Alter von 17 bis 91 Jahren. Die Ursachen der Optikusatrophie waren Kompressionen (5), Entzündungen (4), Glaukom (3), Ischämien (3), Traumata (2), Degenerationen (1) und genetisch (1). Der mittlere Visus war 0,4 (keine Lichtwahrnehmung 1,2). In der Fluoreszenzangiografie fand sich keine Leckage. Das OCT des mikrozystischen Makulaödems korrelierte immer mit den Infrarot-Bildern (Nahaufnahme), jedoch nur in 26 % mit den Gesichtsfelddefekten. Alle OCT-Parameter waren abnormal. Schlussfolgerungen: Das mikrozystische Makulaödem ist eine unspezifische Manifestation einer Optikusneuropathie jeglicher Ätiologie. Der genaue Mechanismus, der zu einem mikrozystischen Makulaödem führt, ist unbekannt, eine trans-synaptische retrograde Degeneration mit Dysfunktion der Müller-Zellen ist jedoch wahrscheinlich.
Resumo:
Given the climatic changes around the world and the growing outdoor sports participation, existing guidelines and recommendations for exercising in naturally challenging environments such as heat, cold or altitude, exhibit potential shortcomings. Continuous efforts from sport sciences and exercise physiology communities aim at minimizing the risks of environmental-related illnesses during outdoor sports practices. Despite this, the use of simple weather indices does not permit an accurate estimation of the likelihood of facing thermal illnesses. This provides a critical foundation to modify available human comfort modeling and to integrate bio-meteorological data in order to improve the current guidelines. Although it requires further refinement, there is no doubt that standardizing the recently developed Universal Thermal Climate Index approach and its application in the field of sport sciences and exercise physiology may help to improve the appropriateness of the current guidelines for outdoor, recreational and competitive sports participation. This review first summarizes the main environmental-related risk factors that are susceptible to increase with recent climate changes when exercising outside and offers recommendations to combat them appropriately. Secondly, we briefly address the recent development of thermal stress models to assess the thermal comfort and physiological responses when practicing outdoor activities in challenging environments.
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
BACKGROUND: Globally, Africans and African Americans experience a disproportionate burden of type 2 diabetes, compared to other race and ethnic groups. The aim of the study was to examine the association of plasma glucose with indices of glucose metabolism in young adults of African origin from 5 different countries. METHODS: We identified participants from the Modeling the Epidemiologic Transition Study, an international study of weight change and cardiovascular disease (CVD) risk in five populations of African origin: USA (US), Jamaica, Ghana, South Africa, and Seychelles. For the current study, we included 667 participants (34.8 ± 6.3 years), with measures of plasma glucose, insulin, leptin, and adiponectin, as well as moderate and vigorous physical activity (MVPA, minutes/day [min/day]), daily sedentary time (min/day), anthropometrics, and body composition. RESULTS: Among the 282 men, body mass index (BMI) ranged from 22.1 to 29.6 kg/m(2) in men and from 25.8 to 34.8 kg/m(2) in 385 women. MVPA ranged from 26.2 to 47.1 min/day in men, and from 14.3 to 27.3 min/day in women and correlated with adiposity (BMI, waist size, and % body fat) only among US males after controlling for age. Plasma glucose ranged from 4.6 ± 0.8 mmol/L in the South African men to 5.8 mmol/L US men, while the overall prevalence for diabetes was very low, except in the US men and women (6.7 and 12 %, respectively). Using multivariate linear regression, glucose was associated with BMI, age, sex, smoking hypertension, daily sedentary time but not daily MVPA. CONCLUSION: Obesity, metabolic risk, and other potential determinants vary significantly between populations at differing stages of the epidemiologic transition, requiring tailored public health policies to address local population characteristics.