197 resultados para V1 receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time perception is used in our day-to-day activities. While we understand quite well how our brain processes vision, touch or taste, brain mechanisms subserving time perception remain largely understudied. In this study, we extended an experiment of previous master thesis run by Tatiana Kenel-Pierre. We focused on time perception in the range of milliseconds. Previous studies have demonstrated the involvement of visual areas V1 and V5/MT in the encoding of temporal information of visual stimuli. Based on these previous findings the aim of the present study was to understand if temporal information was encoded in V1 and extrastriate area V5/MT in different spatial frames i.e., head- centered versus eye-centered. To this purpose we asked eleven healthy volunteers to perform a temporal discrimination task of visual stimuli. Stimuli were presented at 4 different spatial positions (i.e., different combinations of retinotopic and spatiotopic position). While participants were engaged in this task we interfered with the activity of the right dorsal V1 and the right V5/MT with transcranial magnetic stimulation (TMS). Our preliminary results showed that TMS over both V1 and V5/MT impaired temporal discrimination of visual stimuli presented at specific spatial coordinates. But whereas TMS over V1 impaired temporal discrimination of stimuli presented in the lower left quadrant, TMS over V5/MT affected temporal discrimination of stimuli presented at the top left quadrant. Although it is always difficult to draw conclusions from preliminary results, we could tentatively say that our data seem to suggest that both V1 and V5/MT encode visual temporal information in specific spatial frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.