213 resultados para Reference Modeling
Resumo:
BACKGROUND: Niemann-Pick type C (NP-C) is a rare progressive neurodegenerative lipid storage disorder with heterogeneous clinical presentation and challenging diagnostic procedures. Recently oxysterols have been reported to be specific biomarkers for NP-C but knowledge on the intra-individual variation and on reference intervals in children and adolescents are lacking. METHODS: We established a LC-MS/MS assay to measure Cholestane-3β, 5α, 6β-triol (C-triol) and 7-Ketocholesterol (7-KC) following Steglich esterification. To assess reference intervals and intra-individual variation we determined oxysterols in 148 children and adolescents from 0 to 18 years and repeat measurements in 19 of them. RESULTS: The reported method is linear (r>0.99), sensitive (detection limit of 0.03 ng/mL [0.07 nM] for C-triol, and 0.54 ng/mL [1.35 nM] for 7-KC) and precise, with an intra-day imprecision of 4.8% and 4.1%, and an inter-day imprecision of 7.0% and 11.0% for C-triol (28 ng/ml, 67 nM) and 7-KC (32 ng/ml, 80 nM), respectively. Recoveries for 7-KC and C-triol range between 93% and 107%. The upper reference limit obtained for C-triol is 40.4 ng/mL (95% CI: 26.4-61.7 ng/mL, 96.0 nM, 95% CI: 62.8-146.7 nM) and 75.0 ng/mL for 7-KC (95% CI: 55.5-102.5 ng/mL, 187.2 nM, 95% CI: 138.53-255.8 nM), with no age or gender dependency. Both oxysterols have a broad intra-individual variation of 46%±23% for C-triol and 52%±29% for 7-KC. Nevertheless, all Niemann-Pick patients showed increased C-triol levels including Niemann-Pick type A and B patients. CONCLUSIONS: The LC-MS/MS assay is a robust assay to quantify C-triol and 7-KC in plasma with well documented reference intervals in children and adolescents to screen for NP-C in the pediatric population. In addition our results suggest that especially the C-triol is a biomarker for all three Niemann-Pick diseases.
Resumo:
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
BACKGROUND: Globally, Africans and African Americans experience a disproportionate burden of type 2 diabetes, compared to other race and ethnic groups. The aim of the study was to examine the association of plasma glucose with indices of glucose metabolism in young adults of African origin from 5 different countries. METHODS: We identified participants from the Modeling the Epidemiologic Transition Study, an international study of weight change and cardiovascular disease (CVD) risk in five populations of African origin: USA (US), Jamaica, Ghana, South Africa, and Seychelles. For the current study, we included 667 participants (34.8 ± 6.3 years), with measures of plasma glucose, insulin, leptin, and adiponectin, as well as moderate and vigorous physical activity (MVPA, minutes/day [min/day]), daily sedentary time (min/day), anthropometrics, and body composition. RESULTS: Among the 282 men, body mass index (BMI) ranged from 22.1 to 29.6 kg/m(2) in men and from 25.8 to 34.8 kg/m(2) in 385 women. MVPA ranged from 26.2 to 47.1 min/day in men, and from 14.3 to 27.3 min/day in women and correlated with adiposity (BMI, waist size, and % body fat) only among US males after controlling for age. Plasma glucose ranged from 4.6 ± 0.8 mmol/L in the South African men to 5.8 mmol/L US men, while the overall prevalence for diabetes was very low, except in the US men and women (6.7 and 12 %, respectively). Using multivariate linear regression, glucose was associated with BMI, age, sex, smoking hypertension, daily sedentary time but not daily MVPA. CONCLUSION: Obesity, metabolic risk, and other potential determinants vary significantly between populations at differing stages of the epidemiologic transition, requiring tailored public health policies to address local population characteristics.
Resumo:
BACKGROUND: Variations in physical activity (PA) across nations may be driven by socioeconomic position. As national incomes increase, car ownership becomes within reach of more individuals. This report characterizes associations between car ownership and PA in African-origin populations across 5 sites at different levels of economic development and with different transportation infrastructures: US, Seychelles, Jamaica, South Africa, and Ghana. METHODS: Twenty-five hundred adults, ages 25-45, were enrolled in the study. A total of 2,101 subjects had valid accelerometer-based PA measures (reported as average daily duration of moderate to vigorous PA, MVPA) and complete socioeconomic information. Our primary exposure of interest was whether the household owned a car. We adjusted for socioeconomic position using household income and ownership of common goods. RESULTS: Overall, PA levels did not vary largely between sites, with highest levels in South Africa, lowest in the US. Across all sites, greater PA was consistently associated with male gender, fewer years of education, manual occupations, lower income, and owning fewer material goods. We found heterogeneity across sites in car ownership: after adjustment for confounders, car owners in the US had 24.3 fewer minutes of MVPA compared to non-car owners in the US (20.7 vs. 45.1 minutes/day of MVPA); in the non-US sites, car-owners had an average of 9.7 fewer minutes of MVPA than non-car owners (24.9 vs. 34.6 minutes/day of MVPA). CONCLUSIONS: PA levels are similar across all study sites except Jamaica, despite very different levels of socioeconomic development. Not owning a car in the US is associated with especially high levels of MVPA. As car ownership becomes prevalent in the developing world, strategies to promote alternative forms of active transit may become important.
Resumo:
CONTEXT: Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by (a) the metabolites of the fetal-placental unit at birth, (b) the fetal adrenal androgens until its involution 3-6 months postnatally, and (c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE: The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS: We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS: 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION: The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.