312 resultados para Rabies vaccines.
Resumo:
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Resumo:
The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent.
Resumo:
Localization of human MHC class I-restricted T cell epitopes in the circumsporozoite (CS) protein of the human parasite Plasmodium falciparum is an important objective in the development of antimalarial vaccines. To this purpose, we synthesized a series of overlapping synthetic 20-mer peptides, spanning the entire sequence of the 7G8 CS molecule except for the central repeat B cell domain. The P.f.CS peptides were first tested for their ability to bind to the human MHC class I HLA-A2.1 molecule on T2, a human cell line. Subsequently, the use of a series of shorter peptide analogues allowed us to determine the optimal A2.1 binding sequence present in several of the 20-mers. Binding P.f.CS peptides were further tested for their capacity to activate PBL from HLA-A2.1+ immune donors living in a malaria-endemic area. Specific IFN-gamma production was detected in the supernatant of cultures of PBL from exposed individuals. Cytotoxic T cell lines and clones were derived from the PBL of one responder, and their activity was shown to be HLA-A2.1-restricted and specific for the peptide 334-342 of the CS protein. In addition, double transgenic HLA-A2.1 x human beta 2-microglobulin mice were immunized with peptide 1-10 of the CS protein. T cells derived from immune lymph nodes displayed a peptide-specific HLA-A2.1-restricted cytolytic activity after one in vitro stimulation.
Resumo:
As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL-1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence-associated RD1 locus of MTB. However, Nlrp3-deficient mice controlled pulmonary TB, a feature correlated with NLRP3-independent production of IL-1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX-1-dependent manner. However, during TB, MTB promotes NLRP3- and caspase-1-independent IL-1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.
Resumo:
Aluminum-adsorbed hepatitis A vaccines are known to be highly efficient. We present here the case of a patient who was immunized against hepatitis A before leaving for Kenya and who contracted an acute symptomatic hepatitis A during travel.
Resumo:
BACKGROUND: Combination highly active antiretroviral therapy (HAART) has significantly decreased HIV-1 related morbidity and mortality globally transforming HIV into a controllable condition. HAART has a number of limitations though, including limited access in resource constrained countries, which have driven the search for simpler, affordable HIV-1 treatment modalities. Therapeutic HIV-1 vaccines aim to provide immunological support to slow disease progression and decrease transmission. We evaluated the safety, immunogenicity and clinical effect of a novel recombinant plasmid DNA therapeutic HIV-1 vaccine, GTU(®)-multi-HIVB, containing 6 different genes derived from an HIV-1 subtype B isolate. METHODS: 63 untreated, healthy, HIV-1 infected, adults between 18 and 40 years were enrolled in a single-blinded, placebo-controlled Phase II trial in South Africa. Subjects were HIV-1 subtype C infected, had never received antiretrovirals, with CD4 ≥ 350 cells/mm(3) and pHIV-RNA ≥ 50 copies/mL at screening. Subjects were allocated to vaccine or placebo groups in a 2:1 ratio either administered intradermally (ID) (0.5mg/dose) or intramuscularly (IM) (1mg/dose) at 0, 4 and 12 weeks boosted at 76 and 80 weeks with 1mg/dose (ID) and 2mg/dose (IM), respectively. Safety was assessed by adverse event monitoring and immunogenicity by HIV-1-specific CD4+ and CD8+ T-cells using intracellular cytokine staining (ICS), pHIV-RNA and CD4 counts. RESULTS: Vaccine was safe and well tolerated with no vaccine related serious adverse events. Significant declines in log pHIV-RNA (p=0.012) and increases in CD4+ T cell counts (p=0.066) were observed in the vaccine group compared to placebo, more pronounced after IM administration and in some HLA haplotypes (B*5703) maintained for 17 months after the final immunisation. CONCLUSIONS: The GTU(®)-multi-HIVB plasmid recombinant DNA therapeutic HIV-1 vaccine is safe, well tolerated and favourably affects pHIV-RNA and CD4 counts in untreated HIV-1 infected individuals after IM administration in subjects with HLA B*57, B*8101 and B*5801 haplotypes.
Resumo:
CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.
Resumo:
The immunogenicity of influenza vaccine is suboptimal in lung transplant recipients. Use of a booster dose and vaccine delivery by the intradermal rather than intramuscular route may improve response. We prospectively evaluated the immunogenicity and safety of a 2-dose boosting strategy of influenza vaccine. Sixty lung transplant recipients received a standard intramuscular injection of the 2006-2007 inactivated influenza vaccine, followed 4 weeks later by an intradermal booster of the same vaccine. Immunogenicity was assessed by measurement of geometric mean titer of antibodies after both the intramuscular injection and the intradermal booster. Vaccine response was defined as 4-fold or higher increase of antibody titers to at least one vaccine antigen. Thirty-eight out of 60 patients (63%) had a response after intramuscular vaccination. Geometric mean titers increased for all three vaccine antigens following the first dose (p < 0.001). However, no significant increases in titer were observed after the booster dose for all three antigens. Among nonresponders, 3/22 (13.6%) additional patients responded after the intradermal booster (p = 0.14). The use of basiliximab was associated with a positive response (p = 0.024). After a single standard dose of influenza vaccine, a booster dose given by intradermal injection did not significantly improve vaccine immunogenicity in lung transplant recipients.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
A recombinant rubella virus E1 (rE1) glycoprotein was produced and some of its chemical and immunological features were characterized. Two animal models were then used to establish that the rE1 glycoprotein and rubella virus particles shared antigenic and immunogenic properties. In the first one, sera from rE1 glycoprotein-immunized BALB/c mice neutralized in vitro rubella virus infection. In the second model, severe combined immune deficient (SCID) mice implanted with tonsil fragments from rubella immune donors and immunized with rE1 glycoprotein produced human anti-rubella virus antibodies. Altogether, these results showed that immunization with rE1 glycoprotein elicited neutralizing anti-rubella virus antibodies. This study thus indicated that the rE1 glycoprotein could constitute a non-replicating rubella vaccine.
Resumo:
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8(+) T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8(+) T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8(+) T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Resumo:
Even if only a small proportion of asylum seekers obtains a permanent resident permit, a significant number of them stay for a prolonged or indefinite period in Switzerland in a legal or illegal way. The asylum seekers can be either vectors or victims of infectious diseases. Some of these diseases can be prevented by vaccination. This article summarizes the recent decisions which have been taken in the canton Vaud concerning the vaccination of asylum seekers. These new recommendations privilege a large coverage of a maximum number of asylum seekers. Vaccinations against varicella and human papillomavirus will be proposed in addition to the already previously recommended vaccines. Finally the medical visits for the vaccinations will also be an opportunity to screen for chronic hepatitis B which has been neglected until now.
Resumo:
The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.