437 resultados para RNA-mediated resistamce


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenovirus-mediated gene therapy is hampered by severe virus-related toxicity, especially to the liver. The aim of the present study was to test the ability of a vascular exclusion technique to achieve transgene expression within selected liver segments, thus minimizing both viral and transgene product toxicity to the liver. An E1-E3-deleted replication-deficient adenovirus expressing a green fluorescent protein (GFP) reporter gene was injected into the portal vein of BDIX rats, with simultaneous clamping of the portal vein tributaries to liver segments II, III, IV, V, and VIII. GFP expression and inflammatory infiltrate were measured in the different segments of the liver and compared with those of the livers of animals receiving the viral vector in the portal vein without clamping. The GFP expression was significantly higher in the selectively perfused segments of the liver as compared with the non-perfused segments (p < 0.0001) and with the livers of animals that received the vector in the portal vein without clamping (p < 0.0001). Accordingly, the inflammatory infiltrate was more intense in the selectively perfused liver segments as compared with all other groups (p < 0.0001). Fluorescence was absent in lungs and kidneys and minimal in spleen. The clinical usefulness of adenovirus-mediated gene transfer to the liver largely depends on the reduction of its liver toxicity. Clamping of selected portal vein branches during injection allows for delivery of genes of interest to targeted liver segments. Transgene expression confined to selected liver segments may be useful in the treatment of focal liver diseases, including metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS: The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION: Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using numerical simulations, we investigate the underlying physical effects responsible for the overall organization of chromosomal territories in interphase nuclei. In particular, we address the following three questions: (i) why are chromosomal territories with relatively high transcriptional activity on average, closer to the centre of cell's nucleus than those with the lower activity? (ii) Why are actively transcribed genes usually located at the periphery of their chromosomal territories? (iii) Why are pair-wise contacts between active and inactive genes less frequent than those involving only active or only inactive genes? We show that transcription factories-mediated contacts between active genes belonging to different chromosomal territories are instrumental for all these features of nuclear organization to emerge spontaneously due to entropic effects arising when chromatin fibres are highly crowded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND STUDY AIMS: Low dose photodynamic therapy (LDPDT) may modify the mucosal immune response and may thus provide a therapy for Crohn's disease. We evaluated the efficacy and safety of this technique in a murine T cell-mediated colitis model. METHODS: The safety of LDPDT was first tested in BALB/c mice. Naïve T cells were used to induce colitis in mice with severe combined immunodeficiency, which were followed up endoscopically, and a murine endoscopic index of colitis (MEIC) was developed. The efficacy of LDPDT (10 J/cm (2); delta-aminolevulinic acid, 15 mg/kg bodyweight) was then tested on mice with moderate colitis, while a disease control group received no treatment. The MEIC, weight, length, and histology of the colon, cytokine expression indices, number of mucosal CD4 (+) T cells, percentage of apoptotic CD4 (+) T cells, body weight, and systemic side effects were evaluated. RESULTS: LDPDT improved the MEIC ( P = 0.011) and the histological score ( P = 0.025), diminished the expression indices of the proinflammatory cytokines, interleukin-6 ( P = 0.042), interleukin-17 ( P = 0.029), and interferon-gamma ( P = 0.014), decreased the number of mucosal CD4 (+) T cells, and increased the percentage of apoptotic CD4 (+) T cells compared with the disease control group. No local or systemic side effects occurred. CONCLUSION: LDPDT improves murine T cell-mediated colitis, decreases the proinflammatory cytokines interleukin-6, interleukin-17, and interferon-gamma, and decreases the number of CD4 (+) T cells. No adverse events were observed. Therefore, this technique is now being evaluated in patients with inflammatory bowel disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often supposed that a protein's rate of evolution and its amino acid content are determined by the function and anatomy of the protein. Here we examine an alternative possibility, namely that the requirement to specify in the unprocessed RNA, in the vicinity of intron-exon boundaries, information necessary for removal of introns (e.g., exonic splice enhancers) affects both amino acid usage and rates of protein evolution. We find that the majority of amino acids show skewed usage near intron-exon boundaries, and that differences in the trends for the 2-fold and 4-fold blocks of both arginine and leucine show this to be owing to effects mediated at the nucleotide level. More specifically, there is a robust relationship between the extent to which an amino acid is preferred/avoided near boundaries and its enrichment/paucity in splice enhancers. As might then be expected, the rate of evolution is lowest near intron-exon boundaries, at least in part owing to splice enhancers, such that domains flanking intron-exon junctions evolve on average at under half the rate of exon centres from the same gene. In contrast, the rate of evolution of intronless retrogenes is highest near the domains where intron-exon junctions previously resided. The proportion of sequence near intron-exon boundaries is one of the stronger predictors of a protein's rate of evolution in mammals yet described. We conclude that after intron insertion selection favours modification of amino acid content near intron-exon junctions, so as to enable efficient intron removal, these changes then being subject to strong purifying selection even if nonoptimal for protein function. Thus there exists a strong force operating on protein evolution in mammals that is not explained directly in terms of the biology of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroposed genes (retrogenes) originate via the reverse transcription of mature messenger RNAs from parental source genes and are therefore usually devoid of introns. Here, we characterize a particular set of mammalian retrogenes that acquired introns upon their emergence and thus represent rare cases of intron gain in mammals. We find that although a few retrogenes evolved introns in their coding or 3' untranslated regions (untranslated region, UTR), most introns originated together with untranslated exons in the 5' flanking regions of the retrogene insertion site. They emerged either de novo or through fusions with 5' UTR exons of host genes into which the retrogenes inserted. Generally, retrogenes with introns display high transcription levels and show broader spatial expression patterns than other retrogenes. Our experimental expression analyses of individual intron-containing retrogenes show that 5' UTR introns may indeed promote higher expression levels, at least in part through encoded regulatory elements. By contrast, 3' UTR introns may lead to downregulation of expression levels via nonsense-mediated decay mechanisms. Notably, the majority of retrogenes with introns in their 5' flanks depend on distant, sometimes bidirectional CpG dinucleotide-enriched promoters for their expression that may be recruited from other genes in the genomic vicinity. We thus propose a scenario where the acquisition of new 5' exon-intron structures was directly linked to the recruitment of distant promoters by these retrogenes, a process potentially facilitated by the presence of proto-splice sites in the genomic vicinity of retrogene insertion sites. Thus, the primary role and selective benefit of new 5' introns (and UTR exons) was probably initially to span the often substantial distances to potent CpG promoters driving retrogene transcription. Later in evolution, these introns then obtained additional regulatory roles in fine tuning retrogene expression levels. Our study provides novel insights regarding mechanisms underlying the origin of new introns, the evolutionary relevance of intron gain, and the origin of new gene promoters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl(-1) of RNA material, without prior PCR amplification and use of labels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor gamma (PPARgamma) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPARalpha, beta, and gamma in RT4 cells and only by PPARbeta in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.