249 resultados para Positron Emission Tomography
Resumo:
Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.
Resumo:
The aim of this study was to provide an insight into normative values of the ascending aorta in regards to novel endovascular procedures using ECG-gated multi-detector CT angiography. Seventy-seven adult patients without ascending aortic abnormalities were evaluated. Measurements at relevant levels of the aortic root and ascending aorta were obtained. Diameter variations of the ascending aorta during cardiac cycle were also considered. Mean diameters (mm) were as follows: LV outflow tract 20.3 +/- 3.4, coronary sinus 34.2 +/- 4.1, sino-tubular junction 29.7 +/- 3.4 and mid ascending aorta 32.7 +/- 3.8 with coefficients of variation (CV) ranging from 12 to 17%. Mean distances (mm) were: from the plane passing through the proximal insertions of the aortic valve cusps to the right brachio-cephalic artery (BCA) 92.6 +/- 11.8, from the plane passing through the proximal insertions of the aortic valve cusps to the proximal coronary ostium 12.1 +/- 3.7, and between both coronary ostia 7.2 +/- 3.1, minimal arc of the ascending aorta from left coronary ostium to right BCA 52.9 +/- 9.5, and the fibrous continuity between the aortic valve and the anterior leaflet of the mitral valve 14.6 +/- 3.3, CV 13-43%. Mean aortic valve area was 582.0 +/- 131.9 mm(2). The variation of the antero-posterior and transverse diameters of the ascending aorta during the cardiac cycle were 8.4% and 7.3%, respectively. Results showed large inter-individual variations in diameters and distances but with limited intra-individual variations during the cardiac cycle. A personalized approach for planning endovascular devices must be considered.
Resumo:
L'imagerie est de plus en plus utilisée en médecine forensique. Actuellement, les connaissances nécessaires pour interpréter les images post mortem sont faibles et surtout celles concernant les artéfacts post mortem. Le moyen radiologique le plus utilisé en médecine légale est la tomodensitométrie multi-coupes (TDMC). Un de ses avantages est la détection de gaz dans le corps. Cette technique est utile au diagnostic d'embolie gazeuse mais sa très grande sensibilité rend visible du gaz présent même en petite quantité. Les premières expériences montrent que presque tous les corps scannés présentent du gaz surtout dans le système vasculaire. Pour cette raison, le médecin légiste est confronté à un nouveau problème : la distinction entre du gaz d'origine post-mortem et une embolie gazeuse vraie. Pour parvenir à cette distinction, il est essentiel d'étudier la distribution de ces gaz en post mortem. Aucune étude systématique n'a encore été réalisée à ce jour sur ce sujet.¦Nous avons étudié l'incidence et la distribution des gaz présents en post mortem dans les vaisseaux, dans les os, dans les tissus sous-cutanés, dans l'espace sous-dural ainsi que dans les cavités crânienne, thoracique et abdominale (82 sites au total) de manière à identifier les facteurs qui pourraient distinguer le gaz post-mortem artéfactuel d'une embolie gazeuse¦Les données TDMC de 119 cadavres ont été étudiées rétrospectivement. Les critères d'inclusion des sujets sont l'absence de lésion corporelle permettant la contamination avec l'air extérieur, et, la documentation du délai entre le moment du décès et celui du CT-scan (p.ex. rapport de police, protocole de réanimation ou témoin). La présence de gaz a été évaluée semi-quantitativement par deux radiologues et codifiée. La codification est la suivante : grade 0 = pas de gaz, grade 1 = une à quelques bulles d'air, grade 2 = structure partiellement remplie d'air, grade 3 = structure complètement remplie d'air.¦Soixante-quatre des 119 cadavres présentent du gaz (62,2%), et 56 (75,7%) ont montré du gaz dans le coeur. Du gaz a été détecté le plus fréquemment dans le parenchyme hépatique (40%); le coeur droit (ventricule 38%, atrium 35%), la veine cave inférieure (infra-rénale 30%, supra-rénale 26%), les veines sus-hépatiques (gauche 26%, moyenne 29%, droite 22 %), et les espaces du porte (29%). Nous avons constaté qu'une grande quantité de gaz liée à la putréfaction présente dans le coeur droit (grade 3) est associée à des collections de gaz dans le parenchyme hépatique (sensibilité = 100%, spécificité = 89,7%). Pour décrire nos résultats, nous avons construit une séquence d'animation qui illustre le processus de putréfaction et l'apparition des gaz à la TDMC post-mortem.¦Cette étude est la première à montrer que l'apparition post-mortem des gaz suit un modèle de distribution spécifique. L'association entre la présence de gaz intracardiaque et dans le parenchyme hépatique pourrait permettre de distinguer du gaz artéfactuel d'origine post-mortem d'une embolie gazeuse vraie. Cette étude fournit une clé pour le diagnostic de la mort due à une embolie gazeuse cardiaque sur la base d'une TDMC post-mortem.¦Abstract¦Purpose: We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism.¦Material and Methods: MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs and body spaces (82 total sites).¦Results: Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8 to 70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%); right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5-84 h after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho=0.719, p<0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in peri-umbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction.¦Conclusion: This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post- mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolism.
Resumo:
For radiotherapy treatment planning of retinoblastoma inchildhood, Computed Tomography (CT) represents thestandard method for tumor volume delineation, despitesome inherent limitations. CT scan is very useful inproviding information on physical density for dosecalculation and morphological volumetric information butpresents a low sensitivity in assessing the tumorviability. On the other hand, 3D ultrasound (US) allows ahigh accurate definition of the tumor volume thanks toits high spatial resolution but it is not currentlyintegrated in the treatment planning but used only fordiagnosis and follow-up. Our ultimate goal is anautomatic segmentation of gross tumor volume (GTV) in the3D US, the segmentation of the organs at risk (OAR) inthe CT and the registration of both. In this paper, wepresent some preliminary results in this direction. Wepresent 3D active contour-based segmentation of the eyeball and the lens in CT images; the presented approachincorporates the prior knowledge of the anatomy by usinga 3D geometrical eye model. The automated segmentationresults are validated by comparing with manualsegmentations. Then, for the fusion of 3D CT and USimages, we present two approaches: (i) landmark-basedtransformation, and (ii) object-based transformation thatmakes use of eye ball contour information on CT and USimages.
Resumo:
PURPOSE: To describe the use of anterior segment optical coherence tomography (AS-OCT) to clarify the position and patency of aqueous shunt devices in the anterior chamber of eyes where corneal edema or tube position does not permit a satisfactory view. DESIGN: Noncomparative observational case series. METHODS: Four cases are reported in which aqueous shunt malposition or obstruction was suspected but the shunt could not be seen on clinical examination. The patients underwent AS-OCT to identify the position and patency of the shunt tip. RESULTS: In each case, AS-OCT provided data regarding tube position and/or patency that could not be obtained by slit-lamp examination or by gonioscopy that influenced management. CONCLUSIONS: AS-OCT can be used to visualize anterior chamber tubes in the presence of corneal edema that precludes an adequate view or in cases where the tube is retracted into the cornea. In such cases, AS-OCT is useful in identifying shunt patency and position, which helps guide clinical decision making.
Resumo:
OBJECTIVE: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). MATERIALS AND METHODS: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. RESULTS: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. CONCLUSION: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %.
Resumo:
PURPOSE: To analyze available evidence on the incidence of anatomical variations or disease of the maxillary sinuses as identified by cone beam computed tomography (CBCT) in dentistry. MATERIALS AND METHODS: A focused question was developed to search the electronic databases MEDLINE, EMBASE, the Cochrane Oral Health Group Trials Register, and CENTRAL and identify all relevant papers published between 1980 and January 19, 2013. Unpublished literature at ClinicalTrials.gov, in the National Research Register, and in the Pro-Quest Dissertation Abstracts and Thesis database was also included. Studies were included irrespective of language. These results were supplemented by hand and gray literature searches. RESULTS: Twenty-two studies were identified. Twenty were retrospective cohort studies, one was a prospective cohort study, and one was a case control study. The main indication for CBCT was dental implant treatment planning, and the majority of studies used a small field of view for imaging. The most common anatomical variations included increased thickness of the sinus membrane, the presence of sinus septa, and pneumatization. Reported sinus disease frequency varied widely, ranging from 14.3% to 82%. There was a wide range in the reported prevalence of mucosal thickening related to apical pathology, the degree of lumenal opacification, features of sinusitis, and the presence of retention cysts and polyps. More pathologic findings in the maxillary sinus were reported in men than in women, and the medial wall and sinus floor were most frequently affected. CONCLUSION: CBCT is used primarily to evaluate bony anatomy and to screen for overt pathology of the maxillary sinuses prior to dental implant treatment. Differences in the classification of mucosal findings are problematic in the consistent and valid assessment of health and disease of the maxillary sinus.
Resumo:
We propose to evaluate automatic three-dimensional gray-value rigid registration (RR) methods for prostate localization on cone-beam computed tomography (CBCT) scans. In total, 103 CBCT scans of 9 prostate patients have been analyzed. Each one was registered to the planning CT scan using different methods: (a) global RR, (b) pelvis bone structure RR, (c) bone RR refined by local soft-tissue RR using the CT clinical target volume (CTV) expanded with a 1, 3, 5, 8, 10, 12, 15 or 20-mm margin. To evaluate results, a radiation oncologist was asked to manually delineate the CTV on the CBCT scans. The Dice coefficients between each automatic CBCT segmentation - derived from the transformation of the manual CT segmentation - and the manual CBCT segmentation were calculated. Global or bone CT/CBCT RR has been shown to yield insufficient results in average. Local RR with an 8-mm margin around the CTV after bone RR was found to be the best candidate for systematically significantly improving prostate localization.
Resumo:
Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240×40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with then underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (N300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.
Resumo:
To evaluate the sensitivity of postmortem computed tomography (PMCT) in rib fracture detection validated against autopsy. Fifty-one forensic cases underwent a postmortem CT prior to forensic autopsy. Two image readers (radiologist and forensic pathologist) assessed high resolution CT data sets for rib fractures. Correct recognition rates (CRR), sensitivity and specificity values were calculated over all observations as well as individually for every rib and region. Additionally, for partial rib fractures the sensitivity of autopsy was calculated vice versa. 3876 entries in each study protocol (autopsy, PMCT radiologist and PMCT forensic pathologist) were investigated. A total of 690 fractures (autopsy), 491 (PMCT and radiologist) and 559 (PMCT and forensic pathologist) were detected. The CRR was 0.85. Sensitivity and specificity of PMCT for rib fracture detection were 0.63 (0.58 radiologist, 0.68 forensic pathologist) and 0.97 (both readers 0.97), respectively. Low CRR and sensitivity values were obtained for antero-lateral fractures. Partial rib fractures were better detected by PMCT. PMCT has a rather low sensitivity for rib fracture detection when validated against autopsy and indicates that clinical CT may also demonstrate a reasonable number of false negatives. Partial rib fractures often remain undetected at autopsy.
Resumo:
AIMS: This study was performed to compare the sensitivity of ultrasonography, computerized tomography during arterial portography, delayed computerized tomography, and magnetic resonance imaging to detect focal liver lesions. Forty three patients with primary or secondary malignant liver lesions were studied prior to surgical intervention. METHODS: The results of the imaging studies were compared with intraoperative examination of the liver, intraoperative ultrasonography and pathology results (29 patients). In the non-operated (14 patients) group, we compared the number of lesions detected by each technique. RESULTS: One hundred and forty six lesions were detected. There was 84% sensitivity with computerized tomography during arterial portography, 61.3% with delayed scan, 63.3% with magnetic resonance imaging and 51% with ultrasonography in operated patients. In patients who did not undergo surgery, magnetic resonance imaging was more sensitive in detecting lesions. CONCLUSIONS: In operated and non-operated patients series, CT during arterial portography had the highest sensitivity, but magnetic resonance imaging had the most consistent overall results.