223 resultados para P element activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease the CYP2D6 activity in vitro and are present in a minority of patients with chronic hepatitis C infection. We investigated whether LKM-1 antibodies might reduce the CYP2D6 activity in vivo. All patients enrolled in the Swiss Hepatitis C Cohort Study and tested for LKM-1 antibodies were assessed (n = 1723): 10 eligible patients were matched with patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specific substrate using the dextromethorphan/dextrorphan metabolic ratio to classify patients into four activity phenotypes. All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with the CYP2D6 genotype in most LKM-negative patients, whereas only three LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was sixfold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, P = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies. In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1) catalyzes the glucuronidation of bilirubin in liver. Among all UGT isoforms identified to date, it is the only relevant bilirubin-glucuronidating enzyme in human. Because glucuronoconjugation is the major route of bilirubin elimination, any genetic alteration that affects bilirubin glucuronosyltransferase activity may result in a more or less severe hyperbilirubinemia. In this study, we report the cloning and characterization of the transcriptional regulation of the mouse UGT1A1 gene. Primary-structure analysis of the mouse Thymidine Adevice promoter revealed marked differences with its human homolog. First, the mouse promoter lacks the highly polymorphic thymidine/adenine repeat occurring in the human promoter, which has been associated with some forms of hyperbilirubinemia. Second, an L1 transposon element, which is absent in the human promoter, is found 480 bp upstream of the transcription start site in mouse. Using the electromobility shift and DNase I footprinting experiments, we have identified a hepatocyte nuclear factor 1-binding site in the mouse UGT1A1 promoter that confers responsiveness to both factors HNF1alpha and HNF1beta in HEK293 cells. Furthermore, we show that this element, which is conserved in the human promoter, also confers strong HNF1 responsiveness to the human UGT1A1 gene. Together, these results provide evidence for a major regulatory function of this liver-enriched transcription factor in UGT1A1 activity in both rodents and human.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Reduction of necroinflammatory activity is a major goal of antiviral therapy of patients with chronic hepatitis B. Serum ALT does not detect all forms of cell death.Objectives: To analyze dynamics of novel serum cell death markers for apoptosis and necrosis in association with virologic response to nucleos(t)ide (Nuc) analogue treatment.Study design: Quantification of the M30-apoptosis neoepitope and the cytokeratin-18 (M65-necrosis) serum levels before and during treatment of patients with chronic hepatitis B with Nuc (n = 26).Results: Before treatment, M30-apoptotic activity was significantly correlated with M65-necrosis and fibrosis but not with serum ALT. During therapy with Nucs, cell death parameters M30-apoptosis, M65-necrosis, and ALT declined in association with virologic response. The most frequent cell death pattern was simultaneous decline of ALT and M30-apoptosis which occurred more frequently in patients with HBs-Antigen decline than in patients with HBs-Antigen increase during treatment (87.5% vs. 40.0%; p = 0.024). ALT decline in association with increase of M30 apoptosis was frequent in patients with HBs-Antigen increase during treatment (36.3%) but was not observed in patients with HBs-Antigen decline during treatment.Conclusion: Decline of cell death parameters in association with decline of HBV-DNA and HBs-Antigen indicates a reduction in overall cell death activity during Nuc treatment supporting the concept that response to Nuc therapy reduces necroinflammatory activity and progression of liver disease. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cutaneous leishmaniasis is a vector-borne disease that is in Ethiopia mainly caused by the parasite Leishmania aethiopica. This neglected tropical disease is common in rural areas and causes serious morbidity. Persistent nonhealing cutaneous leishmaniasis has been associated with poor T cell mediated responses; however, the underlying mechanisms are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We have recently shown in an experimental model of cutaneous leishmaniasis that arginase-induced L-arginine metabolism suppresses antigen-specific T cell responses at the site of pathology, but not in the periphery. To test whether these results translate to human disease, we recruited patients presenting with localized lesions of cutaneous leishmaniasis and assessed the levels of arginase activity in cells isolated from peripheral blood and from skin biopsies. Arginase activity was similar in peripheral blood mononuclear cells (PBMCs) from patients and healthy controls. In sharp contrast, arginase activity was significantly increased in lesion biopsies of patients with localized cutaneous leishmaniasis as compared with controls. Furthermore, we found that the expression levels of CD3ζ, CD4 and CD8 molecules were considerably lower at the site of pathology as compared to those observed in paired PBMCs. CONCLUSION: Our results suggest that increased arginase in lesions of patients with cutaneous leishmaniasis might play a role in the pathogenesis of the disease by impairing T cell effector functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Cell therapy has emerged as a strategy for the treatment of various human diseases. Cells can be transplanted considering their morphological and functional properties to restore a tissue damage, as represented by blood transfusion, bone marrow or pancreatic islet cells transplantation. With the advent of the gene therapy, cells also were used as biological supports for the production of therapeutic molecules that can act either locally or at distance. This strategy represents the basis of ex vivo gene therapy characterized by the removal of cells from an organism, their genetic modification and their implantation into the same or another individual in a physiologically suitable location. The tissue or biological function damage dictates the type of cells chosen for implantation and the required function of the implanted cells. The general aim of this work was to develop an ex vivo gene therapy approach for the secretion of erythropoietin (Epo) in patients suffering from Epo-responsive anemia, thus extending to humans, studies previously performed with mouse cells transplanted in mice and rats. Considering the potential clinical application, allogeneic primary human cells were chosen for practical and safety reasons. In contrast to autologous cells, the use of allogeneic cells allows to characterize a cell lineage that can be further transplanted in many individuals. Furthermore allogeneic cells avoid the potential risk of zoonosis encountered with xenogeneic cells. Accordingly, the immune reaction against this allogeneic source was prevented by cell macro- encapsulation that prevents cell-to-cell contact with the host immune system and allows to easy retrieve the implanted device. The first step consisted in testing the survival of various human primary cells that were encapsulated and implanted for one month in the subcutaneous tissue of immunocompetent and naturally or therapeutically immunodepressed mice, assuming that xenogeneic applications constitute a stringent and representative screening before human transplantation. A fibroblast lineage from the foreskin of a young donor, DARC 3.1 cells, showed the highest mean survival score. We have then performed studies to optimize the manufacturing procedures of the encapsulation device for successful engraftment. The development of calcifications on the polyvinyl alcohol (PVA) matrix serving as a scaffold for enclosed cells into the hollow fiber devices was reported after one month in vivo. Various parameters, including matrix rinsing solutions, batches of PVA and cell lineages were assessed for their respective role in the development of the phenomenon. We observed that the calcifications could be totally prevented by using ultra-pure sterile water instead of phosphate buffer saline solution in the rinsing procedure of the PVA matrix. Moreover, a higher lactate dehydrogenase activity of the cells was found to decrease calcium depositions due to more acidic microenvironment, inhibiting the calcium precipitation. After the selection of the appropriate cell lineage and the optimization of encapsulation conditions, a retroviral-based approach was applied to DARC 3.1 fibroblasts for the transduction of the human Epo cDNA. Various modifications of the retroviral vector and the infection conditions were performed to obtain clinically relevant levels of human Epo. The insertion of a post-transcriptional regulatory element from the woodchuck hepatitis virus as well as of a Kozak consensus sequence led to a 7.5-fold increase in transgene expression. Human Epo production was further optimized by increasing the multiplicity of infection and by selecting high producer cells allowing to reach 200 IU hEpo/10E6 cells /day. These modified cells were encapsulated and implanted in vivo in the same conditions as previously described. All the mouse strains showed a sustained increase in their hematocrit and a high proportion of viable cells were observed after retrieval of the capsules. Finally, in the perspective of human application, a syngeneic model using encapsulated murine myoblasts transplanted in mice was realized to investigate the roles of both the host immune response and the cells metabolic requirements. Various loading densities and anti-inflammatory as well as immunosuppressive drugs were studied. The results showed that an immune process is responsible of cell death in capsules loaded at high cell density. A supporting matrix of PVA was shown to limit the cell density and to avoid early metabolic cell death, preventing therefore the immune reaction. This study has led to the development of encapsulated cells of human origin producing clinically relevant amounts of human EPO. This work resulted also to the optimization of cell encapsulation technical parameters allowing to begin a clinical application in end-stage renal failure patients. Résumé La thérapie cellulaire s'est imposée comme une stratégie de traitement potentiel pour diverses maladies. Si l'on considère leur morphologie et leur fonction, les cellules peuvent être transplantées dans le but de remplacer une perte tissulaire comme c'est le cas pour les transfusions sanguines ou les greffes de moelle osseuse ou de cellules pancréatiques. Avec le développement de la thérapie génique, les cellules sont également devenues des supports biologiques pour la production de molécules thérapeutiques. Cette stratégie représente le fondement de la thérapie génique ex vivo, caractérisée par le prélèvement de cellules d'un organisme, leur modification génétique et leur implantation dans le même individu ou dans un autre organisme. Le choix du type de cellule et la fonction qu'elle doit remplir pour un traitement spécifique dépend du tissu ou de la fonction biologique atteintes. Le but général de ce travail est de développer .une approche par thérapie génique ex vivo de sécrétion d'érythropoïétine (Epo) chez des patients souffrant d'anémie, prolongeant ainsi des travaux réalisés avec des cellules murines implantées chez des souris et des rats. Dans cette perpective, notre choix s'est porté sur des cellules humaines primaires allogéniques. En effet, contrairement aux cellules autologues, une caractérisation unique de cellules allogéniques peut déboucher sur de nombreuses applications. Par ailleurs, l'emploi de cellules allogéniques permet d'éviter les riques de zoonose que l'on peut rencontrer avec des cellules xénogéniques. Afin de protéger les cellules allogéniques soumises à une réaction immunitaire, leur confinement dans des macro-capsules cylindriques avant leur implantation permet d'éviter leur contact avec les cellules immunitaires de l'hôte, et de les retrouver sans difficulté en cas d'intolérance ou d'effet secondaire. Dans un premier temps, nous avons évalué la survie de différentes lignées cellulaires humaines primaires, une fois encapsulées et implantées dans le tissu sous-cutané de souris, soit immunocompétentes, soit immunodéprimées naturellement ou par l'intermédiaire d'un immunosuppresseur. Ce modèle in vivo correspond à des conditions xénogéniques et représente par conséquent un environnement de loin plus hostile pour les cellules qu'une transplantation allogénique. Une lignée fibroblastique issue du ppuce d'un jeune enfant, nommée DARC 3 .1, a montré une remarquable résistance avec un score de survie moyen le plus élevé parmi les lignées testées. Par la suite, nous nous sommes intéressés aux paramètres intervenant dans la réalisation du système d'implantation afin d'optimaliser les conditions pour une meilleure adaptation des cellules à ce nouvel environnement. En effet, en raison de l'apparition, après un mois in vivo, de calcifications au niveau de la matrice de polyvinyl alcohol (PVA) servant de support aux cellules encapsulées, différents paramètres ont été étudiés, tels que les procédures de fabrication, les lots de PVA ou encore les lignées cellulaires encapsulées, afin de mettre en évidence leur rôle respectif dans la survenue de ce processus. Nous avons montré que l'apparition des calcifications peut être totalement prévenue par l'utilisation d'eau pure au lieu de tampon phosphaté lors du rinçage des matrices de PVA. De plus, nous avons observe qu'un taux de lactate déshydrogénase cellulaire élevé était corrélé avec une diminution des dépôts de calcium au sein de la matrice en raison d'un micro-environnement plus acide inhibant la précipitation du calcium. Après sélection de la lignée cellulaire appropriée et de l'optimisation des conditions d'encapsulation, une modification génétique des fibroblastes DARC 3.1 a été réalisée par une approche rétrovirale, permettant l'insertion de l'ADN du gène de l'Epo dans le génome cellulaire. Diverses modifications, tant au niveau génétique qu'au niveau des conditions d'infection, ont été entreprises afin d'obtenir des taux de sécrétion d'Epo cliniquement appropriés. L'insertion dans la séquence d'ADN d'un élément de régulation post¬transcriptionnelle dérivé du virus de l'hépatite du rongeur (« woodchuck ») ainsi que d'une séquence consensus appelée « Kozak » ont abouti à une augmentation de sécrétion d'Epo 7.5 fois plus importante. De même, l'optimisation de la multiplicité d'infection et la sélection plus drastique des cellules hautement productrices ont permis finalement d'obtenir une sécrétion correspondant à 200 IU d'Epo/10E6 cells/jour. Ces cellules génétiquement modifiées ont été encapsulées et implantées in vivo dans les mêmes conditions que celles décrites plus haut. Toutes les souris transplantées ont montré une augmentation significative de leur hématocrite et une proportion importante de cellules présentait une survie conservée au moment de l'explantation des capsules. Finalement, dans la perspective d'une application humaine, un modèle syngénique a été proposé, basé sur l'implantation de myoblastes murins encapsulés dans des souris, afin d'investiguer les rôles respectifs de la réponse immunitaire du receveur et des besoins métaboliques cellulaires sur leur survie à long terme. Les cellules ont été encapsulées à différentes densités et les animaux transplantés se sont vus administrer des injections de molécules anti-inflammatoires ou immunosuppressives. Les résultats ont démontré qu'une réaction immunologique péri-capsulaire était à la base du rejet cellulaire dans le cas de capsules à haute densité cellulaire. Une matrice de PVA peut limiter cette densité et éviter une mort cellulaire précoce due à une insuffisance métabolique et par conséquent prévenir la réaction immunitaire. Ce travail a permis le développement de cellules encapsulées d'origine humaine sécrétant des taux d'Epo humaine adaptés à des traitements cliniques. De pair avec l'optimalisation des paramètres d'encapsulation, ces résultats ont abouti à l'initiation d'une application clinique destinée à des patients en insuffisance rénale terminale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many interventions promoting physical activity (PA) are effective in preventing disease onset, and although studies have found a positive relationship between health-related quality of life (HRQL) and PA, most of these studies have focused on older adults and those with chronic conditions. Less is known regarding the association between PA level and HRQL among healthy adults. Our objective was to analyse the relationship between PA level and HRQL among a sample of 573 employees aged 20-68 taking part in a workplace intervention to promote PA. Measures included HRQL (using a single item) and PA (i.e. Godin Leisure-Time Questionnaire). The Modified Canadian Aerobic Fitness Test (MCAFT) was also completed by 10% of the employees. MET-minute scores (assessing energy expenditure over one week) were compared across HRQL categories using ANOVA. A multiple linear regression analysis was conducted to further examine the relationship between HRQL and PA, controlling for potential covariates. Participants in the higher health status categories were found to report higher levels of energy expenditure (one-way ANOVA, p < 0.001). In the multiple linear regression model, each unit increase in health status level translated in a mean increase of 356 MET-minutes in energy expenditure (p < 0.001). This single-item assessment of health status explained six percent of the variance in energy expenditure. The study concludes that higher energy expenditure through PA among an adult workplace population is positively associated with increased health status, and it also suggests that a single-item HRQL measure is suitable for community- and population-based studies, reducing response burden and research costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: We investigated whether the oral administration of a low dose (75 micro g) of midazolam, a CYP3A probe, can be used to measure the in vivo CYP3A activity. METHODS: Plasma concentrations of midazolam, 1'OH-midazolam and 4'OH-midazolam were measured after the oral administration of 7.5 mg and 75 micro g midazolam in 13 healthy subjects without medication, in four subjects pretreated for 2 days with ketoconazole (200 mg b.i.d.), a CYP3A inhibitor, and in four subjects pretreated for 4 days with rifampicin (450 mg q.d.), a CYP3A inducer. RESULTS: After oral administration of 75 micro g midazolam, the 30-min total (unconjugated + conjugated) 1'OH-midazolam/midazolam ratios measured in the groups without co-medication, with ketoconazole and with rifampicin were (mean+/-SD): 6.23+/-2.61, 0.79+/-0.39 and 56.1+/-12.4, respectively. No side effects were reported by the subjects taking this low dose of midazolam. Good correlations were observed between the 30-min total 1'OH-midazolam/midazolam ratio and midazolam clearance in the group without co-medication (r(2)=0.64, P<0.001) and in the three groups taken together (r(2)=0.91, P<0.0001). Good correlations were also observed between midazolam plasma levels and midazolam clearance, measured between 1.5 h and 4 h. CONCLUSION: A low oral dose of midazolam can be used to phenotype CYP3A, either by the determination of total 1'OH-midazolam/midazolam ratios at 30 min or by the determination of midazolam plasma levels between 1.5 h and 4 h after its administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daptomycin is a promising candidate for local treatment of bone infection due to its activity against multi-resistant staphylococci. We investigated the activity of antibiotic-loaded PMMA against Staphylococcus epidermidis biofilms using an ultra-sensitive method bacterial heat detection method (microcalorimetry). PMMA cylinders loaded with daptomycin alone or in combination with gentamicin or PEG600, vancomycin and gentamicin were incubated with S. epidermidis-RP62A in tryptic soy broth (TSB) for 72h. Cylinders were thereafter washed and transferred in microcalorimetry ampoules pre-filled with TSB. Bacterial heat production, proportional to the quantity of biofilm on the PMMA, was measured by isothermal microcalorimetry at 37°C. Heat detection time was considered time to reach 20μW. Experiments were performed in duplicate. The heat detection time was 5.7-7.0h for PMMA without antibiotics. When loaded with 5% of daptomycin, vancomycin or gentamicin, detection times were 5.6-16.4h, 16.8-35.7h and 4.7-6.2h, respectively. No heat was detected when 5% gentamicin or 0.5% PEG600 was added to the daptomycin-loaded PMMA. The study showed that vancomycin was superior to daptomycin and gentamicin in inhbiting staphylococcal adherence in vitro. However, PMMA loaded with daptomycin combined with gentamicin or PEG600 completely inhibited S. epidermidis-biofilm formation. PMMA loaded with these combinations may represent effective strategies for local treatment in the presence of multi-resistant staphylococci.