306 resultados para MR-IMAGES
Resumo:
PURPOSE: To use diffusion-tensor (DT) magnetic resonance (MR) imaging in patients with essential tremor who were treated with transcranial MR imaging-guided focused ultrasound lesion inducement to identify the structural connectivity of the ventralis intermedius nucleus of the thalamus and determine how DT imaging changes correlated with tremor changes after lesion inducement. MATERIALS AND METHODS: With institutional review board approval, and with prospective informed consent, 15 patients with medication-refractory essential tremor were enrolled in a HIPAA-compliant pilot study and were treated with transcranial MR imaging-guided focused ultrasound surgery targeting the ventralis intermedius nucleus of the thalamus contralateral to their dominant hand. Fourteen patients were ultimately included. DT MR imaging studies at 3.0 T were performed preoperatively and 24 hours, 1 week, 1 month, and 3 months after the procedure. Fractional anisotropy (FA) maps were calculated from the DT imaging data sets for all time points in all patients. Voxels where FA consistently decreased over time were identified, and FA change in these voxels was correlated with clinical changes in tremor over the same period by using Pearson correlation. RESULTS: Ipsilateral brain structures that showed prespecified negative correlation values of FA over time of -0.5 or less included the pre- and postcentral subcortical white matter in the hand knob area; the region of the corticospinal tract in the centrum semiovale, in the posterior limb of the internal capsule, and in the cerebral peduncle; the thalamus; the region of the red nucleus; the location of the central tegmental tract; and the region of the inferior olive. The contralateral middle cerebellar peduncle and bilateral portions of the superior vermis also showed persistent decrease in FA over time. There was strong correlation between decrease in FA and clinical improvement in hand tremor 3 months after lesion inducement (P < .001). CONCLUSION: DT MR imaging after MR imaging-guided focused ultrasound thalamotomy depicts changes in specific brain structures. The magnitude of the DT imaging changes after thalamic lesion inducement correlates with the degree of clinical improvement in essential tremor.
Resumo:
Aims Perfusion-cardiac magnetic resonance (CMR) has emerged as a potential alternative to single-photon emission computed tomography (SPECT) to assess myocardial ischaemia non-invasively. The goal was to compare the diagnostic performance of perfusion-CMR and SPECT for the detection of coronary artery disease (CAD) using conventional X-ray coronary angiography (CXA) as the reference standard. Methods and results In this multivendor trial, 533 patients, eligible for CXA or SPECT, were enrolled in 33 centres (USA and Europe) with 515 patients receiving MR contrast medium. Single-photon emission computed tomography and CXA were performed within 4 weeks before or after CMR in all patients. The prevalence of CAD in the sample was 49%. Drop-out rates for CMR and SPECT were 5.6 and 3.7%, respectively (P = 0.21). The primary endpoint was non-inferiority of CMR vs. SPECT for both sensitivity and specificity for the detection of CAD. Readers were blinded vs. clinical data, CXA, and imaging results. As a secondary endpoint, the safety profile of the CMR examination was evaluated. For CMR and SPECT, the sensitivity scores were 0.67 and 0.59, respectively, with the lower confidence level for the difference of +0.02, indicating superiority of CMR over SPECT. The specificity scores for CMR and SPECT were 0.61 and 0.72, respectively (lower confidence level for the difference: -0.17), indicating inferiority of CMR vs. SPECT. No severe adverse events occurred in the 515 patients. Conclusion In this large multicentre, multivendor study, the sensitivity of perfusion-CMR to detect CAD was superior to SPECT, while its specificity was inferior to SPECT. Cardiac magnetic resonance is a safe alternative to SPECT to detect perfusion deficits in CAD.
Resumo:
A cardiac-triggered free-breathing three-dimensional balanced fast field-echo projection magnetic resonance (MR) angiographic sequence with a two-dimensional pencil-beam aortic labeling pulse was developed for the renal arteries. For data acquisition during free breathing in eight healthy adults and seven consecutive patients with renal artery disease, real-time navigator technology was implemented. This technique allows high-spatial-resolution and high-contrast renal MR angiography and visualization of renal artery stenosis without exogenous contrast agent or breath hold. Initial promising results warrant larger clinical studies.
Resumo:
A better prediction of the outcome after ischemia and estimation of onset time at early time points would greatly facilitate clinical decisions. Therefore, the aim of the present study was to use magnetic resonance spectroscopy to identify neurochemical markers for outcome prediction at early time points after ischemia.ICR-CD1 mice were subjected to 10-minute, 30-minute or permanent middle cerebral artery occlusion (MCAO). The regional cerebral blood flow (CBF) was monitored in all animals by laser-Doppler flowmetry. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were Bacquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6-8 μl) or the cortex (2.2-2.5 μl). Six animals (sham group) underwent nearly identical procedures without MCAO.By comparing the evolution of several metabolites in ischemia of varying severity, we observed that glutamine increases early after transient ischemia independently of severity, but decreases in permanent ischemia. On the opposite, GABA increased in permanent ischemia and decreased in transient. We also observed a decrease in the sum of N-acetyl aspartate + glutamate + taurine in all irreversibly damaged tissues, independently of reperfusion and severity. Finally, we have observed that some metabolites decrease exponentially after ischemia. This exponential decrease could be used to determine the time of ischemia onset in permanent ischemia.In Conclusion, magnetic resonance spectroscopy can be used as a prognostic and diagnostic tool to monitor reperfusion, identify reversibly and irreversibly damaged tissue and evaluate the time of ischemia onset. If these Results can be translated to stroke patients, this technique would greatly improve the diagnosis and help with clinical decisions.
Resumo:
This paper presents the segmentation of bilateral parotid glands in the Head and Neck (H&N) CT images using an active contour based atlas registration. We compare segmentation results from three atlas selection strategies: (i) selection of "single-most-similar" atlas for each image to be segmented, (ii) fusion of segmentation results from multiple atlases using STAPLE, and (iii) fusion of segmentation results using majority voting. Among these three approaches, fusion using majority voting provided the best results. Finally, we present a detailed evaluation on a dataset of eight images (provided as a part of H&N auto segmentation challenge conducted in conjunction with MICCAI-2010 conference) using majority voting strategy.
Resumo:
Introduction: Smuggling dissolved drugs, especially cocaine, in bottled liquids is a problem at borders nowadays. Common fluoroscopy of packages at the border cannot detect contaminated liquids. To find a dissolved drug, an immunological test using a drug-test panel has to be performed. This means that a control sample of the cargo must be opened to perform the test. As it is not possible to open all boxes, and as smugglers hide the drugcontaining boxes between regularly filled boxes, contaminated cargos can be overlooked. Investigators sometimes cannot perform the drug-test panel because they try not to arouse the smugglers' suspicion in order to follow the cargo and to find the recipient. Aims: The objective of our studies was to define non-invasive examination techniques to investigate cargos that are suspicions to contain dissolved cocaine without leaving traces on the samples. We examined vessels containing cocaine by radiological cross-section techniques such as multidetector computed tomography (MDCT) and magnetic resonance spectroscopy (MRS). Methods: In a previous study, we examined bottles of wine containing dissolved cocaine in different quantities using an MDCT unit. To distinguish between bottles containing red wine and those where cocaine was solved in the wine, cross sectional 2D-images have been reconstructed and the absorption of X-rays was quantified by measuring the mean density of the liquid inside the bottles. In our new study, we investigated phantoms containing cocaine dissolved in water with or without ethanol as well as cocaine dissolved in different sorts of commercially available wine by the use of a clinical magnetic resonance unit (3 tesla). To find out if dissolved cocaine could be detected, magnetic resonance spectroscopy (1H MRS) was performed. Results: By using a MDCT-unit and measuring the mean attenuation of X-rays, it is possible to distinguish weather substances are dissolved in a liquid or not, if a comparative liquid without any solutions is available. The increase of the mean density indicates the presence of dissolved substances without the possibility to identify the substance. By using magnetic resonance spectroscopy, dissolved cocaine can be clearly identified because it produces distinctive resonances in the spectrum. In contrast to MDCT, this technique shows a high sensitivity (detection of 1 mM cocaine in wine). Conclusions: Cross-sectional imaging techniques such as MDCT and MRS appropriated to examine cargos that are suspicious to contain dissolved cocaine. They allow to perform non-invasive investigations without leaving any trace on the cargo. While an MDCT scan can detect dissolved substances in liquids, identification of cocaine can be obtained by MR-spectroscopy. Acknowledgment: This work was supported by the Centre d'Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL), the Swiss Federal Institute of Technology Lausanne (EPFL), the University of Geneva (UniGe), the Centre Hospitalier Universitaire Vaudois (CHUV), the Hôpitaux Universitaire de Genève (HUG) and the Leenaards and the Jeantet Foundations.
Resumo:
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.
Resumo:
The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification.