217 resultados para LIGAND-FIELD
Resumo:
This article first provides a selective overview of the literature on bureaucratic autonomy and identifies different approaches to this topic. The second section discusses three major sets of open questions, which will be tackled in the contributions to this special issue: the subjective, dynamic and relational nature of autonomy; the complex linkages between tasks, organizational forms, and national path dependencies on the one hand and autonomy and performance on the other hand; and the interplay between autonomy, accountability and democratic legitimacy.
Resumo:
The death-inducing receptor Fas is activated when cross-linked by the type II membrane protein Fas ligand (FasL). When human soluble FasL (sFasL, containing the extracellular portion) was expressed in human embryo kidney 293 cells, the three N-linked glycans of each FasL monomer were found to be essential for efficient secretion. Based on the structure of the closely related lymphotoxin alpha-tumor necrosis factor receptor I complex, a molecular model of the FasL homotrimer bound to three Fas molecules was generated using knowledge-based protein modeling methods. Point mutations of amino acid residues predicted to affect the receptor-ligand interaction were introduced at three sites. The F275L mutant, mimicking the loss of function murine gld mutation, exhibited a high propensity for aggregation and was unable to bind to Fas. Mutants P206R, P206D, and P206F displayed reduced cytotoxicity toward Fas-positive cells with a concomitant decrease in the binding affinity for the recombinant Fas-immunoglobulin Fc fusion proteins. Although the cytotoxic activity of mutant Y218D was unaltered, mutant Y218R was inactive, correlating with the prediction that Tyr-218 of FasL interacts with a cluster of three basic amino acid side chains of Fas. Interestingly, mutant Y218F could induce apoptosis in murine, but not human cells.
Resumo:
Molecular docking softwares are one of the important tools of modern drug development pipelines. The promising achievements of the last 10 years emphasize the need for further improvement, as reflected by several recent publications (Leach et al., J Med Chem 2006, 49, 5851; Warren et al., J Med Chem 2006, 49, 5912). Our initial approach, EADock, showed a good performance in reproducing the experimental binding modes for a set of 37 different ligand-protein complexes (Grosdidier et al., Proteins 2007, 67, 1010). This article presents recent improvements regarding the scoring and sampling aspects over the initial implementation, as well as a new seeding procedure based on the detection of cavities, opening the door to blind docking with EADock. These enhancements were validated on 260 complexes taken from the high quality Ligand Protein Database [LPDB, (Roche et al., J Med Chem 2001, 44, 3592)]. Two issues were identified: first, the quality of the initial structures cannot be assumed and a manual inspection and/or a search in the literature are likely to be required to achieve the best performance. Second the description of interactions involving metal ions still has to be improved. Nonetheless, a remarkable success rate of 65% was achieved for a large scale blind docking assay, when considering only the top ranked binding mode and a success threshold of 2 A RMSD to the crystal structure. When looking at the five-top ranked binding modes, the success rate increases up to 76%. In a standard local docking assay, success rates of 75 and 83% were obtained, considering only the top ranked binding mode, or the five top binding modes, respectively.
Resumo:
NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.
Resumo:
NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.
Resumo:
The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.
Resumo:
BACKGROUND: Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. METHODS: We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. RESULTS: Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. CONCLUSION: TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastoma.
Resumo:
microRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs have been proposed as biomarkers of disease, including diagnosis, prognosis, and monitoring of treatment responses. These circulating miRNAs are highly stable in several body fluids, including plasma and serum; hence, in view of their potential use as novel, non-invasive biomarkers, the profiles of circulating miRNAs have been explored in the field of anti-doping. This chapter describes the enormous potential of circulating miRNAs as a new class of biomarkers for the detection of doping substances, and highlights the advantages of measuring these stable species over other methods that have already been implemented in anti-doping regimes. Incorporating longitudinal measurements of circulating miRNAs into the Athlete Biological Passport is proposed as an efficient strategy for the implementation of these new biomarkers. Furthermore, potential challenges related to the transition of measurements of circulating miRNAs from research settings to practical anti-doping applications are presented.
Resumo:
Understanding molecular recognition is one major requirement for drug discovery and design. Physicochemical and shape complementarity between two binding partners is the driving force during complex formation. In this study, the impact of shape within this process is analyzed. Protein binding pockets and co-crystallized ligands are represented by normalized principal moments of inertia ratios (NPRs). The corresponding descriptor space is triangular, with its corners occupied by spherical, discoid, and elongated shapes. An analysis of a selected set of sc-PDB complexes suggests that pockets and bound ligands avoid spherical shapes, which are, however, prevalent in small unoccupied pockets. Furthermore, a direct shape comparison confirms previous studies that on average only one third of a pocket is filled by its bound ligand, supplemented by a 50 % subpocket coverage. In this study, we found that shape complementary is expressed by low pairwise shape distances in NPR space, short distances between the centers-of-mass, and small deviations in the angle between the first principal ellipsoid axes. Furthermore, it is assessed how different binding pocket parameters are related to bioactivity and binding efficiency of the co-crystallized ligand. In addition, the performance of different shape and size parameters of pockets and ligands is evaluated in a virtual screening scenario performed on four representative targets.
Resumo:
This book is the transcript of a witness seminar on the history of experimental economics, in which eleven high-profile experimental economists participated, including Nobel Laureates Vernon Smith, Reinhard Selten and Alvin Roth. The witness seminar was constructed along four different topics: skills, community, laboratory, and funding. The transcript is preceded by an introduction explaining the method of the witness seminar and its specific set-up and resuming its results. The participants' contribution and their lively discussion provide a wealth of insights into the emergence of experimental economics as a field of research.
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.