203 resultados para Hierarchical Spatial Classification
Resumo:
CD34/QBEND10 immunostaining has been assessed in 150 bone marrow biopsies (BMB) including 91 myelodysplastic syndromes (MDS), 16 MDS-related AML, 25 reactive BMB, and 18 cases where RA could neither be established nor ruled out. All cases were reviewed and classified according to the clinical and morphological FAB criteria. The percentage of CD34-positive (CD34 +) hematopoietic cells and the number of clusters of CD34+ cells in 10 HPF were determined. In most cases the CD34+ cell count was similar to the blast percentage determined morphologically. In RA, however, not only typical blasts but also less immature hemopoietic cells lying morphologically between blasts and promyelocytes were stained with CD34. The CD34+ cell count and cluster values were significantly higher in RA than in BMB with reactive changes (p<0.0001 for both), in RAEB than in RA (p=0.0006 and p=0.0189, respectively), in RAEBt than in RAEB (p=0.0001 and p=0.0038), and in MDS-AML than in RAEBt (p<0.0001 and p=0.0007). Presence of CD34+ cell clusters in RA correlated with increased risk of progression of the disease. We conclude that CD34 immunostaining in BMB is a useful tool for distinguishing RA from other anemias, assessing blast percentage in MDS cases, classifying them according to FAB, and following their evolution.
Resumo:
BACKGROUND: Several studies have established Glioblastoma Multiforme (GBM) prognostic and predictive models based on age and Karnofsky Performance Status (KPS), while very few studies evaluated the prognostic and predictive significance of preoperative MR-imaging. However, to date, there is no simple preoperative GBM classification that also correlates with a highly prognostic genomic signature. Thus, we present for the first time a biologically relevant, and clinically applicable tumor Volume, patient Age, and KPS (VAK) GBM classification that can easily and non-invasively be determined upon patient admission. METHODS: We quantitatively analyzed the volumes of 78 GBM patient MRIs present in The Cancer Imaging Archive (TCIA) corresponding to patients in The Cancer Genome Atlas (TCGA) with VAK annotation. The variables were then combined using a simple 3-point scoring system to form the VAK classification. A validation set (N = 64) from both the TCGA and Rembrandt databases was used to confirm the classification. Transcription factor and genomic correlations were performed using the gene pattern suite and Ingenuity Pathway Analysis. RESULTS: VAK-A and VAK-B classes showed significant median survival differences in discovery (P = 0.007) and validation sets (P = 0.008). VAK-A is significantly associated with P53 activation, while VAK-B shows significant P53 inhibition. Furthermore, a molecular gene signature comprised of a total of 25 genes and microRNAs was significantly associated with the classes and predicted survival in an independent validation set (P = 0.001). A favorable MGMT promoter methylation status resulted in a 10.5 months additional survival benefit for VAK-A compared to VAK-B patients. CONCLUSIONS: The non-invasively determined VAK classification with its implication of VAK-specific molecular regulatory networks, can serve as a very robust initial prognostic tool, clinical trial selection criteria, and important step toward the refinement of genomics-based personalized therapy for GBM patients.
Resumo:
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
We have devised a program that allows computation of the power of F-test, and hence determination of appropriate sample and subsample sizes, in the context of the one-way hierarchical analysis of variance with fixed effects. The power at a fixed alternative is an increasing function of the sample size and of the subsample size. The program makes it easy to obtain the power of F-test for a range of values of sample and subsample sizes, and therefore the appropriate sizes based on a desired power. The program can be used for the 'ordinary' case of the one-way analysis of variance, as well as for hierarchical analysis of variance with two stages of sampling. Examples are given of the practical use of the program.
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
A recent study suggests that sex-specific dispersal rates can be quantitatively estimated on the basis of sex- and state-specific (pre- vs. postdispersal) F-statistics. In the present paper, we extend this approach to account for the hierarchical structure of natural populations, and we validate it through individual-based simulations. The model is applied to an empirical data set consisting of 536 individuals (males, females, and predispersal juveniles) of greater white-toothed shrews (Crocidura russula), sampled according to a hierarchical design and typed for seven autosomal microsatellite loci. From this dataset, dispersal is significantly female biased at the local scale (breeding-group level), but not at the larger scale (among local populations). We argue that selective pressures on dispersal are likely to depend on the spatial scale considered, and that short-distance dispersal should mainly respond to kin interactions (inbreeding or kin competition avoidance), which exert differential pressure on males and females.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.