257 resultados para Heikka, Henrikki: Decentered subjectivity and the logic of anarchy
Resumo:
Potentiation of glucose-induced insulin secretion by intestinal factors has been described for many years. Today, two major peptides with potent insulinotropic action have been recognized: gastric inhibitory peptide and truncated forms of glucagon-like peptide I, GLP-I(7-37) or the related GLP-I(7-36)amide. These hormones have specific beta-cell receptors that are coupled to production of cAMP and activation of cAMP-dependent protein kinase. Elevation in intracellular cAMP levels is required to mediate the glucoincretin effect of these hormones: the potentiation of insulin secretion in the presence of stimulatory concentrations of glucose. In addition, circulating glucoincretins maintain basal levels of cAMP, which are necessary to keep beta-cells in a glucose-competent state. Interactions between glucoincretin signaling and glucose-induced insulin secretion may result from the phosphorylation of key elements of the glucose signaling pathway by cAMP-dependent protein kinase. These include the ATP-dependent K+ channel, the Ca++ channel, or elements of the secretory machinery itself. In NIDDM, the glucoincretin effect is reduced. However, basal or stimulated gastric inhibitory peptide and glucagon-like peptide I levels are normal or even elevated, suggesting that signals induced by these hormones on the beta-cells are probably altered. At pharmacological doses, infusion of glucagon-like peptide I but not gastric inhibitory peptide, can ameliorate postprandial insulin secretory response in NIDDM patients. Agonists of the glucagon-like peptide I receptor have been proposed as new therapeutic agents in NIDDM.
Resumo:
Preterm birth may represent a traumatic situation for both parents and a stressful situation for the infant, potentially leading to difficulties in mother-infant relationships. This study aimed to investigate the impact of an early intervention on maternal posttraumatic stress symptoms, and on the quality of mother-infant interactions, in a sample of very preterm infants and their mothers. Half of the very preterm infants involved in the study (n=26) were randomly assigned to a 3-step early intervention program (at 33 and 42 weeks after conception and at 4 months' corrected age). Both groups of preterm infants (with and without intervention) were compared to a group of full-term infants. The impact of the intervention on maternal posttraumatic stress symptoms was assessed 42 weeks after conception and when the infants were 4 and 12 months of age. The impact of the intervention on the quality of mother-infant interactions was assessed when the infants were 4 months old. Results showed a lowering of mothers' posttraumatic stress symptoms between 42 weeks and 12 months in the group of preterm infants who received the intervention. Moreover, an enhancement in maternal sensitivity and infant cooperation during interactions was found at 4 months in the group with intervention. In the case of a preterm birth, an early intervention aimed at enhancing the quality of the mother-infant relationship can help to alleviate maternal post-traumatic stress symptoms and may have a positive impact on the quality of mother-infant interactions.
Resumo:
BACKGROUND: The risk of many cancers is higher in subjects with a family history (FH) of cancer at a concordant site. However, few studies investigated FH of cancer at discordant sites. PATIENTS AND METHODS: This study is based on a network of Italian and Swiss case-control studies on 13 cancer sites conducted between 1991 and 2009, and including more than 12 000 cases and 11 000 controls. We collected information on history of any cancer in first degree relatives, and age at diagnosis. Odds ratios (ORs) for FH were calculated by multiple logistic regression models, adjusted for major confounding factors. RESULTS: All sites showed an excess risk in relation to FH of cancer at the same site. Increased risks were also found for oral and pharyngeal cancer and FH of laryngeal cancer (OR = 3.3), esophageal cancer and FH of oral and pharyngeal cancer (OR = 4.1), breast cancer and FH of colorectal cancer (OR = 1.5) and of hemolymphopoietic cancers (OR = 1.7), ovarian cancer and FH of breast cancer (OR = 2.3), and prostate cancer and FH of bladder cancer (OR = 3.4). For most cancer sites, the association with FH was stronger when the proband was affected at age <60 years. CONCLUSIONS: Our results point to several potential cancer syndromes that appear among close relatives and may indicate the presence of genetic factors influencing multiple cancer sites.
Resumo:
Glucose is an important signal that regulates glucose and energy homeostasis but its precise physiological role and signaling mechanism in the brain are still uncompletely understood. Over the recent years we have investigated the possibility that central glucose sensing may share functional similarities with glucose sensing by pancreatic beta-cells, in particular a requirement for the expression of the glucose transporter Glut2. Using mice with genetic inactivation of Glut2, but rescued pancreatic beta-cell function by transgenic expression of a glucose transporter, we have established that extrapancreatic glucose sensors are involved: i) in the control of glucagon secretion in response to hypoglycemia, ii) in the control of feeding and iii) of energy expenditure. We have more recently shown that central Glut2-dependent glucose sensors are involved in the regulation of NPY and POMC expression by arcuate nucleus neurons and that the sensitivity to leptin of these neurons is enhanced by Glut2-dependent glucose sensors. Using mice with genetic tagging of Glut2-expressing cells, we determined that the NPY and POMC neurons did not express Glut2 but were connected to Glut2 expressing neurons located most probably outside of the arcuate nucleus. We are now defining the electrophysiological behavior of these Glut2 expressing neurons. Our data provide an initial map of glucose sensing neurons expressing Glut2 and link these neurons with the control of specific physiological function.
Resumo:
Tribal war occurs when a coalition of individuals use force to seize reproduction-enhancing resources, and it may have affected human evolution. Here, we develop a population-genetic model for the coevolution of costly male belligerence and bravery when war occurs between groups of individuals in a spatially subdivided population. Belligerence is assumed to increase an actor's group probability of trying to conquer another group. An actor's bravery is assumed to increase his group's ability to conquer an attacked group. We show that the selective pressure on these two traits can be substantial even in groups of large size, and that they may be driven by two independent reproduction-enhancing resources: additional mates for males and additional territory (or material resources) for females. This has consequences for our understanding of the evolution of intertribal interactions, as hunter-gatherer societies are well known to have frequently raided neighbouring groups from whom they appropriated territory, goods and women.
Resumo:
Context: Subclinical thyroid dysfunction is common in older people. However, its clinical importance is uncertain. Objective: Our objective was to determine the extent to which subclinical hyperthyroidism and hypothyroidism influence the risk of heart failure and cardiovascular diseases in older people. Setting and Design: The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) is an prospective cohort study. Patients: Patients included men and women aged 70-82 yr (n = 5316) with known cardiovascular risk factors or previous cardiovascular disease. Main Outcome Measures: Incidence rate of heart failure hospitalization, atrial fibrillation, and cardiovascular events and mortality according to baseline thyroid status were evaluated. Euthyroid participants (TSH =0.45-4.5 mIU/liter) were compared with those with subclinical hyperthyroidism (TSH <0.45 mIU/liter) and those with subclinical hypothyroidism (TSH ≥4.5 mIU/liter, both with normal free T(4)). Results: Subclinical hyperthyroidism was present in 71 participants and subclinical hypothyroidism in 199 participants. Over 3.2 yr follow-up, the rate of heart failure was higher for subclinical hyperthyroidism compared with euthyroidism [age- and sex-adjusted hazard ratio (HR) = 2.93, 95% confidence interval (CI) = 1.37-6.24, P = 0.005; multivariate-adjusted HR = 3.27, 95% CI = 1.52-7.02, P = 0.002). Subclinical hypothyroidism (only at threshold >10 mIU/liter) was associated with heart failure (age- and sex-adjusted HR = 3.01, 95% CI = 1.12-8.11, P = 0.029; multivariate HR = 2.28, 95% CI = 0.84-6.23). There were no strong evidence of an association between subclinical thyroid dysfunction and cardiovascular events or mortality, except in those with TSH below 0.1 or over 10 mIU/liter and not taking pravastatin. Conclusion: Older people at high cardiovascular risk with low or very high TSH along with normal free T(4) appear at increased risk of incident heart failure.
Resumo:
The influence of second phases (e.g., pyroxenes) on olivine grain size was studied by quantitative microfabric analyses of samples of the Hilti massif mantle shear zone (Semail ophiolite, Oman). The microstructures range from porphyroclastic tectonites to ultramylonites, from outside to the center of the shear zone. Starting at conditions of ridge-related flow, they formed under continuous cooling leading to progressive strain localization. The dependence of the average olivine grain size on the second-phase content can be split into a second-phase controlled and a dynamic recrystallization-controlled field. In the former, the olivine grain size is related to the ratio between the second-phase grain size and volume fraction (Zener parameter). In the latter, dynamic recrystallization manifested by a balance between grain growth and grain size reduction processes yields a stable olivine grain size. In both fields the average olivine and second-phase grain size decreases with decreasing temperature. Combining the microstructural information with deformation mechanism maps suggests that the porphyroclastic tectonites (similar to 1100 degrees C) and mylonites (similar to 800 degrees C) formed under the predominance of dislocation creep. Since olivine-rich layers are intercalated with layer parallel, polymineralic bands in the mylonites, nearly equiviscous conditions can be assumed. In the ultramylonites, diffusion creep represents the major deformation mechanism in the polymineralic layers. It is this switch in deformation mechanism from dislocation creep to diffusion creep that forces strain to localize in the fine-grained polymineralic domains at low temperatures (<similar to 700 degrees C), underlining the role of the second phases on strain localization in cooling mantle rocks.
Resumo:
Doping with natural steroids can be detected by evaluating the urinary concentrations and ratios of several endogenous steroids. Since these biomarkers of steroid doping are known to present large inter-individual variations, monitoring of individual steroid profiles over time allows switching from population-based towards subject-based reference ranges for improved detection. In an Athlete Biological Passport (ABP), biomarkers data are collated throughout the athlete's sporting career and individual thresholds defined adaptively. For now, this approach has been validated on a limited number of markers of steroid doping, such as the testosterone (T) over epitestosterone (E) ratio to detect T misuse in athletes. Additional markers are required for other endogenous steroids like dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). By combining comprehensive steroid profiles composed of 24 steroid concentrations with Bayesian inference techniques for longitudinal profiling, a selection was made for the detection of DHT and DHEA misuse. The biomarkers found were rated according to relative response, parameter stability, discriminative power, and maximal detection time. This analysis revealed DHT/E, DHT/5β-androstane-3α,17β-diol and 5α-androstane-3α,17β-diol/5β-androstane-3α,17β-diol as best biomarkers for DHT administration and DHEA/E, 16α-hydroxydehydroepiandrosterone/E, 7β-hydroxydehydroepiandrosterone/E and 5β-androstane-3α,17β-diol/5α-androstane-3α,17β-diol for DHEA. The selected biomarkers were found suitable for individual referencing. A drastic overall increase in sensitivity was obtained.The use of multiple markers as formalized in an Athlete Steroidal Passport (ASP) can provide firm evidence of doping with endogenous steroids. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia--a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs--indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved "antennal IRs," which likely define the first olfactory receptor family of insects, and species-specific "divergent IRs," which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.