210 resultados para GAIT BIOMECHANICS
Resumo:
BACKGROUND: Frailty is detected by weight loss, weakness, slow walking velocity, reduced physical activity or poor endurance/exhaustion. Handwriting has not been examined in the context of frailty, despite its functional importance. OBJECTIVE: Our goal was to examine quantitative handwriting measures in people meeting 0, 1, and 2 or more (2+) frailty criteria. We also examined if handwriting parameters were associated with gait performance, weakness, poor endurance/exhaustion and cognitive impairment. METHODS: From the population-based Lc65+, 72 subjects meeting 2+ frailty criteria with complete handwriting samples were identified. Gender-matched controls meeting 1 criterion or no criteria were identified. Cognitive impairment was defined by a Mini-Mental State Examination score of 25 or less or the lowest 20th percentile of Trail Making Test Part B. Handwriting was recorded using a writing tablet and measures of velocity, pauses, and pressure were extracted. RESULTS: Subjects with 2+ criteria were older, had more health problems and need for assistance but had higher education. No handwriting parameter differed between frailty groups (age and education adjusted). Writing velocity was not significantly slower among participants from the slowest 20th percentile of gait velocity but writing pressure was significantly lower among those from the lowest 20th percentile of grip strength. Poor endurance/exhaustion was not associated with handwriting measures. Low cognitive performance was related to longer pauses. CONCLUSIONS: Handwriting parameters might be associated with specific aspects of the frailty phenotype, but not reliably with global definitions of frailty at its earliest stages among subjects able to perform handwriting tests.
Resumo:
Vitamin D is the main hormone of bone metabolism. However, the ubiquitary nature of vitamin D receptor (VDR) suggests potential for widespread effects, which has led to new research exploring the effects of vitamin D on a variety of tissues, especially in the skeletal muscle. In vitro studies have shown that the active form of vitamin D, calcitriol, acts in myocytes through genomic effects involving VDR activation in the cell nucleus to drive cellular differentiation and proliferation. A putative transmembrane receptor may be responsible for nongenomic effects leading to rapid influx of calcium within muscle cells. Hypovitaminosis D is consistently associated with decrease in muscle function and performance and increase in disability. On the contrary, vitamin D supplementation has been shown to improve muscle strength and gait in different settings, especially in elderly patients. Despite some controversies in the interpretation of meta-analysis, a reduced risk of falls has been attributed to vitamin D supplementation due to direct effects on muscle cells. Finally, a low vitamin D status is consistently associated with the frail phenotype. This is why many authorities recommend vitamin D supplementation in the frail patient.
Resumo:
The present study proposes a method based on ski fixed inertial sensors to automatically compute spatio-temporal parameters (phase durations, cycle speed and cycle length) for the diagonal stride in classical cross-country skiing. The proposed system was validated against a marker-based motion capture system during indoor treadmill skiing. Skiing movement of 10 junior to world-cup athletes was measured for four different conditions. The accuracy (i.e. median error) and precision (i.e. interquartile range of error) of the system was below 6ms for cycle duration and ski thrust duration and below 35ms for pole push duration. Cycle speed precision (accuracy) was below 0.1m/s (0.005m/s) and cycle length precision (accuracy) was below 0.15m (0.005m). The system was sensitive to changes of conditions and was accurate enough to detect significant differences reported in previous studies. Since capture volume is not limited and setup is simple, the system would be well suited for outdoor measurements on snow.
Resumo:
BACKGROUND: Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. METHODS: The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. RESULTS: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). CONCLUSIONS: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults.
Resumo:
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.
Resumo:
The effects of footwear and inclination on running biomechanics over short intervals are well documented. Although recognized that exercise duration can impact running biomechanics, it remains unclear how biomechanics change over time when running in minimalist shoes and on slopes. Our aims were to describe these biomechanical changes during a 50-minute run and compare them to those observed in standard shoes. Thirteen trained recreational male runners ran 50 minutes at 65% of their maximal aerobic velocity on a treadmill, once in minimalist shoes and once in standard shoes, 1 week apart in a random order. The 50-minute trial was divided into 5-minute segments of running at 0%, +5%, and -5% of treadmill incline sequentially. Data were collected using photocells, high-speed video cameras, and plantar-pressure insoles. At 0% incline, runners exhibited reduced leg stiffness and plantar flexion angles at foot strike and lower plantar pressure at the forefoot and toes in minimalist shoes from minute 34 of the protocol onward. However, only reduced plantar pressure at the toes was observed in standard shoes. Overall, similar biomechanical changes with increased exercise time were observed on the uphill and downhill inclines. The results might be due to the unfamiliarity of subjects to running in minimalist shoes.
Resumo:
We compared different approaches to analyze running mechanics alterations during repeated treadmill sprints. Thirteen active male athletes performed five 5-second sprints with 25 seconds of recovery on an instrumented treadmill. This approach allowed continuous measurement of running kinetics/kinematics and calculation of vertical and leg stiffness variables that were subsequently averaged over 3 distinct sections of the 5-second sprint (steps 2-5, 7-10, and 12-15) and for all steps (steps 2-15). Independently from the analyzed section, propulsive power and step frequency decreased with fatigue, while contact time and step length increased (P < .05). Except for step frequency, all mechanical variables varied (P < .05) across sprint sections. The only parameters that highly depend on running velocity (propulsive power and vertical stiffness) showed a significant interaction (P < .05) between the analyzed sections, with smaller magnitude of fatigue-induced change observed for steps 2-5. Considering all steps or only a few steps during early, middle, or late phases of 5-second sprints provides similar mechanical outcomes during repeated treadmill sprinting, although acceleration induces noticeable differences between the sections studied. Furthermore, quantifying mechanical alterations from the early acceleration phase may not be readily detectable, and is not recommended.
Resumo:
In the past 2 decades, there has been an increase in both basic science research detailing the anatomy and biomechanics of the native posterior cruciate ligament (PCL) and outcome studies evaluating manage- ment of the ruptured PCL. While the methodology of the latter continues to improve, results based on the current level of evidence must be interpreted cautiously (18). The focus of many recent studies has been double-bundle versus single-bundle reconstruction techniques. The theoretical advantage goes to double-bundle techniques, but a clinical difference in outcome has not been consistently demonstrated (8,17). Some biomechanical studies have reported improved control of posterior laxity with double-bundle reconstruc- tion; however, results appear to be more dependent on tunnel position and graft tensioning (13). In acute isolated symptomatic PCL injuries in which the posteromedial bundle and the meniscofemoral ligament remain intact, a single-bundle augmentation procedure may be the preferred surgical technique. In more complex PCL ruptures with associated injuries involving the posterolateral structures (PLS) or medial collateral ligament, more benefit may be derived from double-bundle reconstruction. Again, cadaveric testing of double-bundle PCL reconstruction has not consistently outperformed single-bundle techniques in combined PCL/PLS injury (3). Multi-ligamentous injuries are commonly associated with PCL rupture (15), and their management should be considered carefully in the decision to reconstruct one or both of the functionally dis- tinct PCL bundles. However, the technical complexity of double-bundle reconstruction, the longer surgical time required, as well as the inconclusive clinical outcome are all factors that must be weighed carefully.
Resumo:
Demonstration of survival and outcome of progressive multifocal leukoencephalopathy (PML) in a 56-year-old patient with common variable immunodeficiency, consisting of severe hypogammaglobulinemia and CD4+ T lymphocytopenia, during continuous treatment with mirtazapine (30 mg/day) and mefloquine (250 mg/week) over 23 months. Regular clinical examinations including Rankin scale and Barthel index, nine-hole peg and box and block tests, Berg balance, 10-m walking tests, and Montreal Cognitive Assessment (MoCA) were done. Laboratory diagnostics included complete blood count and JC virus (JCV) concentration in cerebrospinal fluid (CSF). The noncoding control region (NCCR) of JCV, important for neurotropism and neurovirulence, was sequenced. Repetitive MRI investigated the course of brain lesions. JCV was detected in increasing concentrations (peak 2568 copies/ml CSF), and its NCCR was genetically rearranged. Under treatment, the rearrangement changed toward the archetype sequence, and later JCV DNA became undetectable. Total brain lesion volume decreased (8.54 to 3.97 cm(3)) and atrophy increased. Barthel (60 to 100 to 80 points) and Rankin (4 to 2 to 3) scores, gait stability, and box and block (7, 35, 25 pieces) and nine-hole peg (300, 50, 300 s) test performances first improved but subsequently worsened. Cognition and walking speed remained stable. Despite initial rapid deterioration, the patient survived under continuous treatment with mirtazapine and mefloquine even though he belongs to a PML subgroup that is usually fatal within a few months. This course was paralleled by JCV clones with presumably lower replication capability before JCV became undetectable. Neurological deficits were due to PML lesions and progressive brain atrophy.
Resumo:
During the last decade, many studies have been carried out to understand the effects of focal vibratory stimuli at various levels of the central nervous system and to study pathophysiological mechanisms of neurological disorders as well as the therapeutic effects of focal vibration in neurorehabilitation. This review aimed to describe the effects of focal vibratory stimuli in neurorehabilitation including the neurological diseases or disorders like stroke, spinal cord injury, multiple sclerosis, Parkinson's' disease and dystonia. In conclusion, focal vibration stimulation is well tolerated, effective and easy to use, and it could be used to reduce spasticity, to promote motor activity and motor learning within a functional activity, even in gait training, independent from etiology of neurological pathology. Further studies are needed in the future well- designed trials with bigger sample size to determine the most effective frequency, amplitude and duration of vibration application in the neurorehabilitation.
Resumo:
The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Resumo:
Partial-thickness tears of the supraspinatus tendon frequently occur at its insertion on the greater tubercule of the humerus, causing pain and reduced strength and range of motion. The goal of this work was to quantify the loss of loading capacity due to tendon tears at the insertion area. A finite element model of the supraspinatus tendon was developed using in vivo magnetic resonance images data. The tendon was represented by an anisotropic hyperelastic constitutive law identified with experimental measurements. A failure criterion was proposed and calibrated with experimental data. A partial-thickness tear was gradually increased, starting from the deep articular-sided fibres. For different values of tendon tear thickness, the tendon was mechanically loaded up to failure. The numerical model predicted a loss in loading capacity of the tendon as the tear thickness progressed. Tendon failure was more likely when the tendon tear exceeded 20%. The predictions of the model were consistent with experimental studies. Partial-thickness tears below 40% tear are sufficiently stable to persist physiotherapeutic exercises. Above 60% tear surgery should be considered to restore shoulder strength.
Resumo:
In 2015, cerebral stimulation becomes increasingly established in the treatment of pharmacoresistant epilepsy. Efficacy of endovascular treatment has been demonstrated for acute ischemic stroke. Deep brain stimulation at low frequency improves dysphagia and freezing of gait in Parkinson patients. Bimagrumab seems to increase muscular volume and force in patients with inclusion body myositis. In cluster-type headache, a transcutaneous vagal nerve stimulator is efficient in stopping acute attacks and also reducing their frequency. Initial steps have been undertaken towards modulating memory by stimulation of the proximal fornix. Teriflunomide is the first oral immunomodulatory drug for which efficacy has been shown in preventing conversion from clinical isolated syndrome to multiple sclerosis.
Resumo:
BACKGROUND: Although the importance of accurate femoral reconstruction to achieve a good functional outcome is well documented, quantitative data on the effects of a displacement of the femoral center of rotation on moment arms are scarce. The purpose of this study was to calculate moment arms after nonanatomical femoral reconstruction. METHODS: Finite element models of 15 patients including the pelvis, the femur, and the gluteal muscles were developed. Moment arms were calculated within the native anatomy and compared to distinct displacement of the femoral center of rotation (leg lengthening of 10 mm, loss of femoral offset of 20%, anteversion ±10°, and fixed anteversion at 15°). Calculations were performed within the range of motion observed during a normal gait cycle. RESULTS: Although with all evaluated displacements of the femoral center of rotation, the abductor moment arm remained positive, some fibers initially contributing to extension became antagonists (flexors) and vice versa. A loss of 20% of femoral offset led to an average decrease of 15% of abductor moment. Femoral lengthening and changes in femoral anteversion (±10°, fixed at 15°) led to minimal changes in abductor moment arms (maximum change of 5%). Native femoral anteversion correlated with the changes in moment arms induced by the 5 variations of reconstruction. CONCLUSION: Accurate reconstruction of offset is important to maintaining abductor moment arms, while changes of femoral rotation had minimal effects. Patients with larger native femoral anteversion appear to be more susceptible to femoral head displacements.