346 resultados para Functional orthopedics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas ligand (FasL, Apo-1L) is a member of the tumor necrosis factor protein family and binding to its receptor (Fas, Apo-1, CD95) triggers cell death through apoptosis. Ligand expression is restricted to cells with known cytolytic activity and found on hematopoietic cells of the T cell and natural killer lineage. Here we provide evidence that B lymphocytes can express FasL. Flow cytometric analysis revealed that FasL is expressed on the surface of B cells upon stimulation with either lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin. FasL expression on activated B cells was confirmed by western blot and reverse transcriptase polymerase chain reaction analysis. FasL on B cells is functional since lipopolysaccharide-activated B lymphocytes derived from wild type, but not from gld mutant mice, were able to kill Fas-sensitive target cells. Our data suggest that the Fas system may contribute to the control of B cell homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recently, it was shown that the relation between admission glucose and functional outcome after ischemic stroke is described by a J-shaped curve, with a glucose range of 3.7-7.3 mmol/l associated with a favorable outcome. We tested the hypothesis that persistence of hyperglycemia above this threshold at 24-48 h after stroke onset impairs 3-month functional outcome. METHODS: We analyzed all patients with glucose >7.3 mmol/l on admission from the Acute STroke Registry and Analysis of Lausanne (ASTRAL). Patients were divided into two groups according to their subacute glucose level at 24-48 h after last well-being time (group 1: ≤7.3 mmol/l, group 2: >7.3 mmol/l). A favorable functional outcome was defined as a modified Rankin Score (mRS) ≤2 at 3 months. A multiple logistic regression analysis of multiple demographic, clinical, laboratory and neuroimaging covariates was performed to assess predictors of an unfavorable outcome. RESULTS: A total of 1,984 patients with ischemic stroke were admitted between January 1, 2003 and October 20, 2009, within 24 h after last well-being time. In the 421 patients (21.2%) with admission glucose >7.3 mmol/l, the proportion of patients with a favorable outcome was not statistically significantly different between the two groups (59.2 vs. 48.7%, respectively). In multiple logistic regression analysis, unfavorable outcome was significantly associated with age (odds ratio, OR: 1.06, 95% confidence interval, 95% CI: 1.03-1.08 for every 10-year increase), National Institute of Health Stroke Score, NIHSS score, on admission (OR: 1.16, 95% CI: 1.11-1.21), prehospital mRS (OR: 12.63, 95% CI: 2.61-61.10 for patients with score >0), antidiabetic drug usage (OR: 0.36, 95% CI: 0.15-0.86) and glucose on admission (OR: 1.16, 95% CI: 1.02-1.31 for every 1 mmol/l increase). No association was found between persistent hyperglycemia at 24-28 h and outcome in either diabetics or nondiabetics. CONCLUSIONS: In ischemic stroke patients with acute hyperglycemia, persistent hyperglycemia (>7.3 mmol/l) at 24-48 h after stroke onset is not associated with a worse functional outcome at 3 months whether the patient was previously diabetic or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circulating monocytes, as dendritic cell and macrophage precursors, exhibit several functions usually associated with antigen-presenting cells, such as phagocytosis and presence of endosomal/lysosomal degradative compartments particularly enriched in Lamp-1, MHC class II molecules, and other proteins related to antigen processing and MHC class II loading [MHC class II compartments (MIICs)]. Ultrastructural analysis of these organelles indicates that, differently from the multivesicular bodies present in dendritic cells, in monocytes the MIICs are characterized by a single perimetral membrane surrounding an electron-dense core. Analysis of their content reveals enrichment in myeloperoxidase, an enzyme classically associated with azurophilic granules in granulocytes and mast cell secretory lysosomes. Elevation in intracellular free calcium levels in monocytes induced secretion of beta-hexosaminidase, cathepsins, and myeloperoxidase in the extracellular milieu; surface up-regulation of MHC class II molecules; and appearance of lysosomal resident proteins. The Ca(2+)-regulated surface transport mechanism of MHC class II molecules observed in monocytes is different from the tubulovesicular organization of the multivesicular bodies previously reported in dendritic cells and macrophages. Hence, in monocytes, MHC class II-enriched organelles combine degradative functions typical of lysosomes and regulated secretion typical of secretory lysosomes. More important, Ca(2+)-mediated up-regulation of surface MHC class II molecules is accompanied by extracellular release of lysosomal resident enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.