235 resultados para Electroencephalogram (EEG)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there is an increased interest in γ-hydroxybutyric acid (GHB) and its effects onsleep. This compound, sometimes referred to as 'rape drug', was recently approved as atreatment for the sleep disorder narcolepsy. Although several studies suggest that GHBinduces slow-wave sleep duration and improves sleep quality by increasing EEG slow-waveactivity, others question its ability to induce physiological sleep. GHB's mechanism of actionis still unclear, although in vivo and in vitro it seems to act at high doses as a low-affinityagonist of GABAB receptors. Furthermore, the role GABAB receptors play in sleep and theelectroencephalogram (EEG) is largely unknown.The aim of this project was therefore to investigate the effects of GHB on sleep and EEG, theinvolvement of GABAB receptors in mediating these effects, as well as the intrinsic role ofeach GABAB receptor subunit in the regulation of sleep. Thus, we administered GHB andbaclofen (BAC, a high-affinity agonist at GABAB receptor) to mice lacking the different GABABreceptor subunits and to healthy human volunteers.Our results, both in mice and humans, showed that GHB produced slow waves exclusivelythrough the stimulation of GABAB receptors, but did not induce physiological sleepnecessary to reduce sleep need and to increase cognitive performance. Unlike GHB, BACaffected the homeostatic regulation of sleep (sleep need) and induced a delayedhypersomnia. Finally, GABAB receptor and its subunits seem to play an important role insleep and in particular its circadian distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Refractory status epilepticus (RSE) treatment is usually performed with coma induction using an appropriate general anesthetic. Most frequent complications are represented by hypotension and infection. Other side-effects may however be encountered. OBSERVATIONS: We describe two patients suffering from acute bowel ischemia after thiopental (THP) treatment for RSE. A 73-year-old man with a complex-patial RSE following an acute stroke received THP (303 mg/kg over 48 h); 36 h after THP discontinuation, he presented abdominal tenderness and lactate elevation. Necrosis of the terminal ileum and colon was seen during surgical exploration; he deceased shortly thereafter. A 21 year-old woman had a cryptogenic de novo generalized-convulsive RSE resistant to 5 attempts of EEG burst-suppression. During the 6th attempt, after THP (840 mg/kg over 150 h) together with mild hypothermia, she developed an ileus with elevated serum lactate; caecum necrosis was observed during surgery. Hypernatremia, acidosis and hyperlactatemia heralded this complication in both patients. CONCLUSION: In these two patients, mechanical vascular ischemia may have resulted from drug-induced paralytic ileus. To our knowledge, this is the first report describing this potential fatal side effect in adults with RSE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilization behavior (UB) consists of reaching out and using objects in the environment in an automatic manner and out of context. This behavior has been correlated to frontal lobe dysfunction, especially of the right hemisphere. We describe a 60-year-old woman, affected by a glioblastoma located in the right frontal region, who presented with intermittent UB of the mobile phone as the main clinical manifestation of partial complex status epilepticus. Video/EEG studies showed a striking correlation between mobile phone utilization and ictal epileptic activity. Clinical and EEG findings were markedly reduced after the introduction of antiepileptic drugs. This case study suggests that UB may be added to the symptoms described for partial seizures originating from frontal areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-trial analysis of human electroencephalography (EEG) has been recently proposed for better understanding the contribution of individual subjects to a group-analysis effect as well as for investigating single-subject mechanisms. Independent Component Analysis (ICA) has been repeatedly applied to concatenated single-trial responses and at a single-subject level in order to extract those components that resemble activities of interest. More recently we have proposed a single-trial method based on topographic maps that determines which voltage configurations are reliably observed at the event-related potential (ERP) level taking advantage of repetitions across trials. Here, we investigated the correspondence between the maps obtained by ICA versus the topographies that we obtained by the single-trial clustering algorithm that best explained the variance of the ERP. To do this, we used exemplar data provided from the EEGLAB website that are based on a dataset from a visual target detection task. We show there to be robust correspondence both at the level of the activation time courses and at the level of voltage configurations of a subset of relevant maps. We additionally show the estimated inverse solution (based on low-resolution electromagnetic tomography) of two corresponding maps occurring at approximately 300 ms post-stimulus onset, as estimated by the two aforementioned approaches. The spatial distribution of the estimated sources significantly correlated and had in common a right parietal activation within Brodmann's Area (BA) 40. Despite their differences in terms of theoretical bases, the consistency between the results of these two approaches shows that their underlying assumptions are indeed compatible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial hearing refers to a set of abilities enabling us to determine the location of sound sources, redirect our attention toward relevant acoustic events, and recognize separate sound sources in noisy environments. Determining the location of sound sources plays a key role in the way in which humans perceive and interact with their environment. Deficits in sound localization abilities are observed after lesions to the neural tissues supporting these functions and can result in serious handicaps in everyday life. These deficits can, however, be remediated (at least to a certain degree) by the surprising capacity of reorganization that the human brain possesses following damage and/or learning, namely, the brain plasticity. In this thesis, our aim was to investigate the functional organization of auditory spatial functions and the learning-induced plasticity of these functions. Overall, we describe the results of three studies. The first study entitled "The role of the right parietal cortex in sound localization: A chronometric single pulse transcranial magnetic stimulation study" (At et al., 2011), study A, investigated the role of the right parietal cortex in spatial functions and its chronometry (i.e. the critical time window of its contribution to sound localizations). We concentrated on the behavioral changes produced by the temporarily inactivation of the parietal cortex with transcranial magnetic stimulation (TMS). We found that the integrity of the right parietal cortex is crucial for localizing sounds in the space and determined a critical time window of its involvement, suggesting a right parietal dominance for auditory spatial discrimination in both hemispaces. In "Distributed coding of the auditory space in man: evidence from training-induced plasticity" (At et al., 2013a), study B, we investigated the neurophysiological correlates and changes of the different sub-parties of the right auditory hemispace induced by a multi-day auditory spatial training in healthy subjects with electroencephalography (EEG). We report a distributed coding for sound locations over numerous auditory regions, particular auditory areas code specifically for precise parts of the auditory space, and this specificity for a distinct region is enhanced with training. In the third study "Training-induced changes in auditory spatial mismatch negativity" (At et al., 2013b), study C, we investigated the pre-attentive neurophysiological changes induced with a training over 4 days in healthy subjects with a passive mismatch negativity (MMN) paradigm. We showed that training changed the mechanisms for the relative representation of sound positions and not the specific lateralization themselves and that it changed the coding in right parahippocampal regions. - L'audition spatiale désigne notre capacité à localiser des sources sonores dans l'espace, de diriger notre attention vers les événements acoustiques pertinents et de reconnaître des sources sonores appartenant à des objets distincts dans un environnement bruyant. La localisation des sources sonores joue un rôle important dans la façon dont les humains perçoivent et interagissent avec leur environnement. Des déficits dans la localisation de sons sont souvent observés quand les réseaux neuronaux impliqués dans cette fonction sont endommagés. Ces déficits peuvent handicaper sévèrement les patients dans leur vie de tous les jours. Cependant, ces déficits peuvent (au moins à un certain degré) être réhabilités grâce à la plasticité cérébrale, la capacité du cerveau humain à se réorganiser après des lésions ou un apprentissage. L'objectif de cette thèse était d'étudier l'organisation fonctionnelle de l'audition spatiale et la plasticité induite par l'apprentissage de ces fonctions. Dans la première étude intitulé « The role of the right parietal cortex in sound localization : A chronometric single pulse study » (At et al., 2011), étude A, nous avons examiné le rôle du cortex pariétal droit dans l'audition spatiale et sa chronométrie, c'est-à- dire le moment critique de son intervention dans la localisation de sons. Nous nous sommes concentrés sur les changements comportementaux induits par l'inactivation temporaire du cortex pariétal droit par le biais de la Stimulation Transcrânienne Magnétique (TMS). Nous avons démontré que l'intégrité du cortex pariétal droit est cruciale pour localiser des sons dans l'espace. Nous avons aussi défini le moment critique de l'intervention de cette structure. Dans « Distributed coding of the auditory space : evidence from training-induced plasticity » (At et al., 2013a), étude B, nous avons examiné la plasticité cérébrale induite par un entraînement des capacités de discrimination auditive spatiale de plusieurs jours. Nous avons montré que le codage des positions spatiales est distribué dans de nombreuses régions auditives, que des aires auditives spécifiques codent pour des parties données de l'espace et que cette spécificité pour des régions distinctes est augmentée par l'entraînement. Dans « Training-induced changes in auditory spatial mismatch negativity » (At et al., 2013b), étude C, nous avons examiné les changements neurophysiologiques pré- attentionnels induits par un entraînement de quatre jours. Nous avons montré que l'entraînement modifie la représentation des positions spatiales entraînées et non-entrainées, et que le codage de ces positions est modifié dans des régions parahippocampales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To investigate the clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Methods: we prospectively assessed all EEG studies recorded in our center over 3 months for the presence of frontal intermittent rhythmic delta activity (FIRDA). The FIRDA group was compared with a randomly selected control group from among EEGs recorded during the same period. Comparisons among FIRDA and non-FIRDA groups were performed using uni- and multi-variate analyses. Results: We found 36 patients with FIRDA among 559 EEG recordings (6%); the control group consisted of 80 subjects. While epilepsy was more frequent in the control group, structural brain lesions and encephalopathy were independently associated with the occurrence of FIRDA, but we could not identify any specific etiology. Asymmetric FIRDA was associated with an underlying brain lesion. Occasionally, FIRDA was recorded in otherwise healthy subjects during hyperventilation. Conclusion: FIRDA appears more common than previously reported, and is associated with a wide range of lesions and encephalopathic conditions. Significance: FIRDA occurrence should prompt investigations for toxic-metabolic disturbances and for structural lesions (particularly if asymmetric), but does not suggest an epileptic predilection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the case of a man with a history of complex partial seizures and severe language, cognitive and behavioural regression during early childhood (3.5 years), who underwent epilepsy surgery at the age of 25 years. His early epilepsy had clinical and electroencephalogram features of the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia (Landau-Kleffner syndrome), which we considered initially to be of idiopathic origin. Seizures recurred at 19 years and presurgical investigations at 25 years showed a lateral frontal epileptic focus with spread to Broca's area and the frontal orbital regions. Histopathology revealed a focal cortical dysplasia, not visible on magnetic resonance imaging. The prolonged but reversible early regression and the residual neuropsychological disorders during adulthood were probably the result of an active left frontal epilepsy, which interfered with language and behaviour during development. Our findings raise the question of the role of focal cortical dysplasia as an aetiology in the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amnestic mild cognitive impairment (aMCI) is characterized by memory deficits alone (single-domain, sd-aMCI) or associated with other cognitive disabilities (multi-domain, md-aMCI). The present study assessed the patterns of electroencephalographic (EEG) activity during the encoding and retrieval phases of short-term memory in these two aMCI subtypes, to identify potential functional differences according to the neuropsychological profile. Continuous EEG was recorded in 43 aMCI patients, whose 16 sd-aMCI and 27 md-aMCI, and 36 age-matched controls (EC) during delayed match-to-sample tasks for face and letter stimuli. At encoding, attended stimuli elicited parietal alpha (8-12 Hz) power decrease (desynchronization), whereas distracting stimuli were associated with alpha power increase (synchronization) over right central sites. No difference was observed in parietal alpha desynchronization among the three groups. For attended faces, the alpha synchronization underlying suppression of distracting letters was reduced in both aMCI subgroups, but more severely in md-aMCI cases that differed significantly from EC. At retrieval, the early N250r recognition effect was significantly reduced for faces in md-aMCI as compared to both sd-aMCI and EC. The results suggest a differential alteration of working memory cerebral processes for faces in the two aMCI subtypes, face covert recognition processes being specifically altered in md-aMCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both neural and behavioral responses to stimuli are influenced by the state of the brain immediately preceding their presentation, notably by pre-stimulus oscillatory activity. Using frequency analysis of high-density electroencephalogram coupled with source estimations, the present study investigated the role of pre-stimulus oscillatory activity in auditory spatial temporal order judgments (TOJ). Oscillations within the beta range (i.e. 18-23Hz) were significantly stronger before accurate than inaccurate TOJ trials. Distributed source estimations identified bilateral posterior sylvian regions as the principal contributors to pre-stimulus beta oscillations. Activity within the left posterior sylvian region was significantly stronger before accurate than inaccurate TOJ trials. We discuss our results in terms of a modulation of sensory gating mechanisms mediated by beta activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroencephalography (EEG) is an easily accessible and low-cost modality that might prove to be a particularly powerful tool for the identification of subtle functional changes preceding structural or metabolic deficits in progressive mild cognitive impairment (PMCI). Most previous contributions in this field assessed quantitative EEG differences between healthy controls, MCI and Alzheimer's disease(AD) cases leading to contradictory data. In terms of MCI conversion to AD, certain longitudinal studies proposed various quantitative EEG parameters for an a priori distinction between PMCI and stable MCI. However, cross-sectional comparisons revealed a substantial overlap in these parameters between MCI patients and elderly controls. Methodological differences including variable clinical definition of MCI cases and substantial interindividual differences within the MCI group could partly explain these discrepancies. Most importantly, EEG measurements without cognitive demand in both cross-sectional and longitudinal designs have demonstrated limited sensitivity and generally do not produce significant group differences in spectral EEG parameters. Since the evolution of AD is characterized by the progressive loss of functional connectivity within neocortical association areas, event-modulated EEG dynamic analysis which makes it possible to investigate the functional activation of neocortical circuits may represent a more sensitive method to identify early alterations of neuronal networks predictive of AD development among MCI cases. The present review summarizes clinically significant results of EEG activation studies in this field and discusses future perspectives of research aiming to reach an early and individual prediction of cognitive decline in healthy elderly controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the incidence and risk factors of electrical seizures and other electrical epileptic activity using continuous EEG (cEEG) in patients with acute stroke. METHODS: One hundred consecutive patients with acute stroke admitted to our stroke unit underwent cEEG using 10 electrodes. In addition to electrical seizures, repetitive focal sharp waves (RSHWs), repetitive focal spikes (RSPs), and periodic lateralized epileptic discharges (PLEDs) were recorded. RESULTS: In the 100 patients, cEEG was recorded for a mean duration of 17 hours 34 minutes (range 1 hour 12 minutes to 37 hours 10 minutes). Epileptic activity occurred in 17 patients and consisted of RSHWs in seven, RSPs in seven, and PLEDs in three. Electrical seizures occurred in two patients. On univariate Cox regression analysis, predictors for electrical epileptic activity were stroke severity (high score on the National Institutes of Health Stroke Scale) (hazard ratio [HR] 1.12; p = 0.002), cortical involvement (HR 5.71; p = 0.021), and thrombolysis (HR 3.27; p = 0.040). Age, sex, stroke type, use of EEG-modifying medication, and cardiovascular risk factors were not predictors of electrical epileptic activity. On multivariate analysis, stroke severity was the only independent predictor (HR 1.09; p = 0.016). CONCLUSION: In patients with acute stroke, electrical epileptic activity occurs more frequently than previously suspected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Patients with magnetic resonance (MR)-negative focal epilepsy (MRN-E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60-90%). Patients with extratemporal MRN-E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI. METHODS: We carried out ESI in 10 operated patients with nonlesional MRI and a postsurgical follow-up of at least 1 year. Five of the 10 patients had extratemporal lobe epilepsy. Evaluation comprised surface and intracranial EEG monitoring of ictal and interictal events, structural MRI, [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET), ictal and interictal perfusion single photon emission computed tomography (SPECT) scans. Eight of the 10 patients also underwent intracranial monitoring. RESULTS: ESI correctly localized the epileptic focus within the resection margins in 8 of 10 patients, 9 of whom experienced favorable postsurgical outcomes. DISCUSSION: The results highlight the diagnostic value of ESI and encourage broadening its application to patients with MRN-E. If the surface EEG contains fairly localized spikes, ESI contributes to the presurgical decision process.