404 resultados para Corpo Expedicionário Português (C.E.P.)
Resumo:
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.
Resumo:
Physicians who frequently perform fluoroscopic examinations are exposed to high intensity radiation fields. The exposure monitoring is performed with a regular personal dosimeter under the apron in order to estimate the effective dose. However, large parts of the body are not protected by the apron (e.g. arms, head). Therefore, it is recommended to wear a supplemental dosimeter over the apron to obtain a better representative estimate of the effective dose. The over-apron dosimeter can also be used to estimate the eye lens dose. The goal of this study was to investigate the relevance of double dosimetry in interventional radiology. First the calibration procedure of the dosimeters placed over the apron was tested. Then, results of double dosimetry during the last five years were analyzed. We found that the personal dose equivalent measured over a lead apron was underestimated by ∼20% to ∼40% for X-ray beam qualities used in radiology. Measurements made over five-year period confirm that the use of a single under-apron dosimeter is inadequate for personnel monitoring. Relatively high skin dose (>10 mSv/month) would have remained undetected without a second dosimeter placed on the apron.
Resumo:
CONTEXT: Infection of implantable cardiac devices is an emerging disease with significant morbidity, mortality, and health care costs. OBJECTIVES: To describe the clinical characteristics and outcome of cardiac device infective endocarditis (CDIE) with attention to its health care association and to evaluate the association between device removal during index hospitalization and outcome. DESIGN, SETTING, AND PATIENTS: Prospective cohort study using data from the International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS), conducted June 2000 through August 2006 in 61 centers in 28 countries. Patients were hospitalized adults with definite endocarditis as defined by modified Duke endocarditis criteria. MAIN OUTCOME MEASURES: In-hospital and 1-year mortality. RESULTS: CDIE was diagnosed in 177 (6.4% [95% CI, 5.5%-7.4%]) of a total cohort of 2760 patients with definite infective endocarditis. The clinical profile of CDIE included advanced patient age (median, 71.2 years [interquartile range, 59.8-77.6]); causation by staphylococci (62 [35.0% {95% CI, 28.0%-42.5%}] Staphylococcus aureus and 56 [31.6% {95% CI, 24.9%-39.0%}] coagulase-negative staphylococci); and a high prevalence of health care-associated infection (81 [45.8% {95% CI, 38.3%-53.4%}]). There was coexisting valve involvement in 66 (37.3% [95% CI, 30.2%-44.9%]) patients, predominantly tricuspid valve infection (43/177 [24.3%]), with associated higher mortality. In-hospital and 1-year mortality rates were 14.7% (26/177 [95% CI, 9.8%-20.8%]) and 23.2% (41/177 [95% CI, 17.2%-30.1%]), respectively. Proportional hazards regression analysis showed a survival benefit at 1 year for device removal during the initial hospitalization (28/141 patients [19.9%] who underwent device removal during the index hospitalization had died at 1 year, vs 13/34 [38.2%] who did not undergo device removal; hazard ratio, 0.42 [95% CI, 0.22-0.82]). CONCLUSIONS: Among patients with CDIE, the rate of concomitant valve infection is high, as is mortality, particularly if there is valve involvement. Early device removal is associated with improved survival at 1 year.
Resumo:
The plasma concentrations of alpha 1-acid glycoprotein (AAG), albumin, triglycerides, cholesterol, and total proteins, as well as the plasma binding of racemic, d-methadone, and l-methadone were measured in 45 healthy subjects. The AAG phenotypes and the concentrations of AAG variants were also determined. The measured free fractions for racemic, d-methadone, and l-methadone were, respectively, 12.7% +/- 3.3%, 10.0% +/- 2.9%, and 14.2% +/- 3.2% (mean +/- SD). A significant correlation was obtained between the binding ratio (B/F) for dl-methadone and the total AAG concentration (r = 0.724; p less than 0.001). A multiple stepwise regression analysis showed that AAG was the main explanatory variable for the binding of the racemate. When concentrations of AAG variants were considered, a significant correlation was obtained between the binding ratio of dl-methadone and orosomucoid2 A concentration (r = 0.715; p less than 0.001), a weak correlation between dl-methadone and orosomucoid1 S concentration (r = 0.494; p less than 0.001), and no correlation between dl-methadone and orosomucoid1 F1 concentration (r = 0.049; not significant). Similar findings were obtained with the enantiomers. This study shows the importance of considering not only total AAG but also concentrations of AAG variants when measuring the binding of methadone and possibly of other drugs in plasma.
Resumo:
The aim of this study is to provide a better understanding of the genetic relationships within the widespread and highly polymorphic group of African giant shrews (Crocidura olivieri group). We sequenced 769 base pairs (bp) of the mitochondrial cytochrome b gene and 472 bp of the mitochondrial control region over the entire geographic range from South Africa to Morocco. The analyses reveal four main clades associated with different biomes. The largest clade occurs over a range covering Northwest and Central Africa and includes samples of C. fulvastra, C. olivieri, and C. viaria. The second clade is composed of C. goliath from Gabon, while South African C. flavescens, and C. hirta form two additional clades. On the basis of these results, the validity of some taxa in the C. olivieri group should be re-evaluated.
Resumo:
The year 2007 has been, as always, a very productive year in terms of new trials, publications and newly edited guidelines. The present article does not pretend to offer a complete overview. The different authors provide a particular choice of clinical research and guidelines in the field of heart failure, endocarditis and interventional cardiology.
Resumo:
Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
Resumo:
Autophagy is a cellular mechanism for degrading proteins and organelles. It was first described as a physiological process essential for maintaining homeostasis and cell survival, but understanding its role in conditions of stress has been complicated by the recognition of a new type of cell death ("type 2") characterized by deleterious autophagic activity. This paradox is important in the central nervous system where the activation of autophagy seems to be protective in certain neurodegenerative diseases but deleterious in cerebral ischemia. The development of new therapeutic strategies based on the manipulation of autophagy will need to take into account these opposing roles of autophagy.
Resumo:
Activated CD8 T cells develop cytotoxicity against autologous cells bearing foreign Ags and self/tumor Ags. However, self-specific cytolysis needs to be kept under control to avoid overwhelming immunopathology. After peptide vaccination of melanoma patients, we studied molecular and functional properties of T cell subsets specific for the self/tumor Ag Melan-A/MART-1. Ex vivo analysis revealed three Ag-specific effector memory (EM) populations, as follows: CD28-negative EM (EM28(-)) T cells strongly expressing granzyme/perforin, and two EM28(+) subsets, one with high and the other with low level expression of these cytotoxic proteins. For further functional characterization, we generated 117 stable CD8 T cell clones by ex vivo flow cytometry-based sorting of these subsets. All EM28(-)-derived clones lysed target cells with high efficacy. In contrast, EM28(+)-derived clones were heterogenous, and could be classified in two groups, one with high and the other with low killing capacity, correlating with granzyme/perforin expression. High and low killer phenotypes remained surprisingly stable for several months. However, strongly increased granzyme expression and cytotoxicity were observed after exposure to IL-12. Thus, the data reveal a newly identified subset of CD28(+) conditional killer T cells. Because CD28 can mediate strong costimulatory signals, tight cytotoxicity control, as shown in this study through IL-12, may be particularly important for subsets of T cells expressing CD28.
Resumo:
Amplification of the epidermal growth factor receptor (EGFR) gene is one of the most common oncogenic alterations in glioblastoma (45%) making it a prime target for therapy. However, small molecule inhibitors of the EGFR tyrosine kinase showed disappointing efficacy in clinical trials for glioblastoma. Here we aimed at investigating the molecular effects of the tyrosine kinase inhibitor gefitinib on the EGFR signaling pathway in human glioblastoma. Twenty-two patients selected for reoperation of recurrent glioblastoma were treated within a phase II trial for 5 days with 500 mg gefitinib before surgery followed by postoperative gefitinib until recurrence. Resected glioblastoma tissues exhibited high concentrations of gefitinib (median, 4.1 μg/g), 20 times higher than respective plasma. EGFR-pathway activity was evaluated with phosphorylation-specific assays. The EGFR was efficiently dephosphorylated in treated patients as compared to a control cohort of 12 patients. However, no significant effect on 12 pathway constituents was detected. In contrast, in vitro treatment of a glioblastoma cell line, BS-153, with endogenous EGFRwt amplification and EGFRvIII expression resulted not only in dephosphorylation of the EGFR, but also of key regulators in the pathway such as AKT. Treating established xenografts of the same cell line as an in vivo model showed dephosphorylation of the EGFR without affecting downstream signal transductors, similar to the human glioblastoma. Taken together, gefitinib reaches high concentrations in the tumor tissue and efficiently dephosphorylates its target. However, regulation of downstream signal transducers in the EGFR pathway seems to be dominated by regulatory circuits independent of EGFR phosphorylation.
Resumo:
OBJECTIVE: To describe prevalence, prenatal diagnosis and outcome for fetuses and infants with congenital hydrocephalus. METHODS: Data were taken from four European registries of congenital malformations (EUROCAT). The registries included are based on multiple sources of information and include information about livebirths, fetal deaths with GA > or = 20 weeks and terminations of pregnancy for fetal anomaly (TOPFA). All cases from the four registries diagnosed with congenital hydrocephalus and born in the period 1996-2003 were included in the study. Cases with hydrocephalus associated with neural tube defects were not included in the study. RESULTS: Eighty-seven cases with congenital hydrocephalus were identified during the study period giving an overall prevalence of 4.65 per 10,000 births. There were 41 livebirths (47%), four fetal deaths (5%) and 42 TOPFA (48%). Nine percent of all cases were from a multiple pregnancy. Additional non-cerebral major malformations were diagnosed in 38 cases (44%) and karyotype anomalies in eight cases (9%). Median GA at TOPFA was 21 weeks. Among livebirths 61% were diagnosed prenatally at a median GA of 31 weeks (range 17-40 weeks) and median GA at birth was 37 weeks. Fourteen liveborn infants (34%) died within the first year of life with the majority of deaths during the first week after birth. CONCLUSION: Congenital hydrocephalus is a severe congenital malformation often associated with other congenital anomalies. CH is often diagnosed prenatally, although sometimes late in pregnancy. A high proportion of affected pregnancies result in termination for severe fetal anomaly and there is a high mortality in livebirths.
Resumo:
To link the presence of intrathecal virus-specific oligoclonal immunoglobulin G (IgG) in multiple sclerosis patients to a demyelinating activity, aggregating rat brain cell cultures were treated with antibodies directed against two viruses, namely, rubella (RV) and hepatitis B (HB). Anti-RV antibodies in the presence of complement decreased myelin basic protein concentrations in a dose-dependent manner, whereas anti-HB antibodies had no effect. A similar but less pronounced effect was observed on the enzymatic activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, which is enriched in noncompact membranes of oligodendrocytes. These effects were comparable to those in cultures treated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG), previously found to be myelinotoxic both in vitro and in vivo. Sequence homologies were found between structural glycoprotein E(2) of RV and MOG, suggesting that demyelination was due to molecular mimicry. To support the hypothesis that demyelination was caused by anti-RV IgG that recognized an MOG epitope, we found that anti-RV antibodies depleted MOG in a dose-dependent manner. Further evidence came from the demonstration that anti-RV and anti-MOG IgG colocalized on oligodendrocyte processes and that both revealed by Western blot a 28 kDa protein in CNS myelin, a molecular weight corresponding to MOG. These findings suggest that a virus such as RV exhibiting molecular mimicry with MOG can trigger an autoimmune demyelination.