458 resultados para CEREBELLAR MUTANT MOUSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclonal antibodies (Mab) directed against distinct epitopes of the human 240 kD melanoma-associated antigen have been evaluated for their capacity to localize in human melanoma grafted into nude mice. A favorable tumor to normal tissue ratio of 13 was obtained with intact 131I-labeled MAb Me1-14. This ratio was further increased to 43 and 23 by the use of F(ab')2 and Fab fragments, respectively. The specificity of tumor localization was demonstrated by the simultaneous injection of F(ab')2 fragments from MAb Me1-14 and anti-CEA MAb 35, each labeled with a different iodine isotope, into nude mice grafted with a melanoma and colon carcinoma. The fragments from both MAb localized with perfect selectivity in their relevant tumor as shown by differential whole body scanning and by direct measurement of the two isotopes in tumors and normal tissues. These in vivo experimental results suggest that the F(ab')2 fragment from MAb Me1-14 is suitable for melanoma detection by immunoscintigraphy in patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Mood disorders are among the most prevalent, psychosocial^ debilitating, chronic and relapsing forms of psychiatric illnesses. Despite considerable advances in their characterization, the heterogeneous nature of susceptibility factors and patient's symptoms could account for the lack of totally effective and remissive treatment. The neurobiological hypothesis of mood disorders etiology has evolved since the monoamine and neurotrophin theories and current evidence is pointing toward their integration in a broader polygenic epistatic model resulting in defective neuroplasticity of circuitries involved in emotion processing. Consequently, the unraveling of molecular underpinning pathways involved in neuronal plasticity, commonly altered among mood disorder syndromes and symptoms, should shed light on their etiology and provide new drug target. The transcription factor CREB has been critically involved in the long-lasting forms of neuronal plasticity and in the regulation of several mood disorders susceptibility genes. In addition, altered CREB activity has been associated with mood disorders pathophysiology and pharmacotherapy. Interestingly, the newly-identified protein CREB-regulated transcription coactivator 1 (CRTC1) was shown by previous studies in the laboratory to be a neuroactivity- dependent cAMP and calcium sensor, a potent activator of CREB-dependent transcription and involved in neuroplasticity mechanisms associated with long-term synaptic potentiation. Furthermore, the major mood disorder susceptibility gene Bdnf was suggested to be transcriptional regulated by CRTC1. Therefore, we aimed to investigate a role for CRTC1 in mood disorders by generating and characterizing a Crtcl deficient mouse model at the behavioral and molecular levels. Interestingly, their comprehensive characterization revealed a behavioral profile mirroring several major symptoms comorbid in mood disorders, including altered social interactions, aggressive behaviors, obesity, psychomotor retardation, increased emotional response to stress, decreased sexual drive and depression-like behaviors. To investigate the molecular mechanisms underlying these pathological behaviors and the implication of CRTC1 in the regulation of CREB-regulated genes in vivo, we also quantified transcript levels of several relevant CREB-regulated susceptibility genes in brain structures involved in the pathophysiology of mood disorders. Strikingly, we found the underexpression of primary components of the neurotrophin system: Bdnf and its cognate receptor TrkB, a marked decrease in the Nr4a family of transcription factors, implicated in neuroplasticity and associated with dopamine-related disorders, as well as in several other relevant CREB regulated genes. Moreover, neurochemical analysis revealed that Crtcl null mice presented alteration in prefrontal cortical monoamine turnover as well as in hippocampal and accumbal serotonin levels, similarly associated with mood disorders etiology and pharmacotherapy. Together, the present thesis supports the involvement of CRTC1 pathway hypofunction in the pathogenesis of mood disorders and specifically in pathological aggression, obesity and depression-related behavior comorbidities. Ultimately, CRTC1 may represent an interesting antidepressant, antiaggressive or mood stabilizer drug target candidate through the modulation of major CREB regulated susceptibility genes. Les troubles de l'humeur comptent parmi les maladies psychiatriques les plus prévalentes, psychosocialement débilitantes, chroniques et avec le plus grand risque de rechute. Malgré de considérable avancées dans leur caractérisation, la nature hétérogène des facteurs de susceptibilité et des symptômes présentés par les patients, semble justifier l'absence de traitement entraînant une rémission complète de la maladie. L'hypothèse de l'étiologie neurobiologique des troubles de l'humeur a évolué depuis la théorie des monoamines et des neurotrophines. Actuellement, elle tend à les englober dans un modèle polygénique épistatique induisant une déficience de la neuroplasticité des circuits impliqué dans la régulation des émotions. Par conséquent, il apparaît particulièrement relevant de caractériser des voies moléculaires impliquées dans la plasticité neuronale, communément altérées parmi les différents syndromes et symptômes des maladies de l'humeur, afin d'améliorer leur compréhension ainsi que de proposer de nouvelles cibles thérapeutiques potentielles. Le facteur de transcription CREB a été de façon répétée et cohérente impliqué dans les mécanismes à long terme de la plasticité neuronale, ainsi que dans la régulation de plusieurs gènes de susceptibilité aux maladies de l'humeur. De plus, une altération dans l'activité de CREB a été impliqué dans leur étiologie et pharmacothérapie. De façon intéressante, des résultats préliminaires sur la protéine récemment découverte CREB-regulated transcription coactivator 1 (CRTC1) ont indiqué que son activation était dépendante de l'activité neuronale, qu'il était un senseur du calcium et de l'AMPc, ainsi qu'un coactivateur de CREB requis et puissant impliqué dans les mécanismes de plasticité neuronale associés à la potentialisation à long terme. En outre, des résultats ont suggéré que le gène majeur de susceptibilité Bdnf est régulé par CRTC1. Ainsi, notre objectif a été d'investiguer un rôle éventuel de CRTC1 dans les maladies de l'humeur en générant et caractérisant une lignée de souris déficiente pour Crtcl, tant au niveau comportemental que moléculaire. De façon intéressante, leur caractérisation détaillée a révélé un profil comportemental reflétant de nombreux aspects des maladies de l'humeur incluant une altération des interactions sociales, une agression pathologique, l'obésité, un retard psychomoteur, une réponse émotionnelle au stress accrue, une diminution de la motivation sexuelle, et des comportements reliés à la dépression. Afin d'investiguer les mécanismes moléculaires sous- jacents cette altération du comportement, ainsi que l'implication de CRTC1 dans l'expression des gènes régulés par CREB in vivo, nous avons quantifié les niveaux de transcrits de plusieurs gènes de susceptibilité régulés par CREB et impliqués dans la physiopathologie des maladies de l'humeur. Remarquablement, nous avons trouvé la sous-expression de composants primordiaux du système neurotrophique: Bdnf et son récepteur TrkB, une diminution majeure de la famille des facteurs de transcription Nr4a, impliqués dans la neuroplasticité et associés à des désordres liés à la dopamine, ainsi que de nombreux autres gènes relevants régulés par CREB. De plus, une analyse neurochimique a révélé que les souris déficientes pour Crtcî présentent une altération du turn-over des monoamines du cortex préfrontal ainsi que des niveaux hippocampaux et accumbaux de sérotonine, associés de façon similaire dans l'étiologie et la pharmacothérapie des maladies de l'humeur. Vue dans son ensemble, la présente thèse supporte l'implication d'une sous-régulation de la voie de CRTCI dans la pathogenèse des maladies de l'humeur ainsi que dans la comorbidité de l'agression pathologique, l'obésité et la dépression. En conclusion, CRTCI pourrait représenter une cible médicamenteuse intéressante aux propriétés antidépressante, antiagressive ou stabilisatrice de l'humeur au travers de la modulation de gènes de susceptibilité majeurs régulés par CREB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score ¼ 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders. [corrected].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixture of 3 MAbs directed against 3 different CEA epitopes was radiolabelled with 131I and used for the treatment of a human colon carcinoma transplanted s.c. into nude mice. Intact MAbs and F(ab')2 fragments were mixed because it had been shown by autoradiography that these 2 antibody forms can penetrate into different areas of the tumor nodule. Ten days after transplantation of colon tumor T380 a single dose of 600 microCi of 131I MAbs was injected i.v. The tumor grafts were well established (as evidenced by exponential growth in untreated mice) and their size continued to increase up to 6 days after radiolabelled antibody injection. Tumor shrinking was then observed lasting for 4-12 weeks. In a control group injected with 600 microCi of 131I coupled to irrelevant monoclonal IgG, tumor growth was delayed, but no regression was observed. Tumors of mice injected with the corresponding amount of unlabelled antibodies grew like those of untreated mice. Based on measurements of the effective whole-body half-life of injected 131I, the mean radiation dose received by the animals was calculated to be 382 rads for the antibody group and 478 rads for the normal IgG controls. The genetically immunodeficient animals exhibited no increase in mortality, and only limited bone-marrow toxicity was observed. Direct measurement of radioactivity in mice dissected 1, 3 and 7 days after 131I-MAb injection showed that 25, 7.2 and 2.2% of injected dose were recovered per gram of tumor, the mean radiation dose delivered to the tumor being thus more than 5,000 rads. These experiments show that therapeutic doses of radioactivity can be selectively directed to human colon carcinoma by i.v. injection of 131I-labelled anti-CEA MAbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 357 house mice (Mus domesticus) from 83 localities uniformly distributed throughout Switzerland were screened for the presence of a homogenously staining region (HSR) on chromosome 1. Altogether 47 mice from 11 localities were HSR/+ or HSR/HSR. One sample of 11 individuals all had an HSR/HSR karyotype. Almost all mice with the variant were collected from the Rhone valley (HSR frequency: 61%) and Val Bregaglia (HSR frequency: 81%). For samples from most of the area of Switzerland, the HSR was absent. There was no strong association between the geographic distribution of the HSR and the areas of occurrence of metacentrics. However, at Chiggiogna the HSR was found on Rb (1.3). Possible explanations for the HSR polymorphism are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cortical collecting duct (CCD) plays a key role in regulated K(+) secretion, which is mediated mainly through renal outer medullary K(+) (ROMK) channels located in the apical membrane. However, the mechanisms of the regulation of urinary K(+) excretion with regard to K(+) balance are not well known. We took advantage of a recently established mouse CCD cell line (mCCD(cl1)) to investigate the regulation of K(+) secretion by mineralocorticoid and K(+) concentration. We show that this cell line expresses ROMK mRNA and a barium-sensitive K(+) conductance in its apical membrane. As this conductance is sensitive to tertiapin-Q, with an apparent affinity of 6 nM, and to intracellular acidification, it is probably mediated by ROMK. Overnight exposure to 100 nM aldosterone did not significantly change the K(+) conductance, while it increased the amiloride-sensitive Na(+) transport. Overnight exposure to a high K(+) (7 mM) concentration produced a small but significant increase in the apical membrane barium-sensitive K(+) conductance. The mRNA levels of all ROMK isoforms measured by qRT-PCR were not changed by altering the basolateral K(+) concentration but were decreased by 15-45% upon treatment with aldosterone (0.3 or 300 nM for 1 and 3 h). The paradoxical response of ROMK expression to aldosterone could possibly work as a preventative mechanism to avoid excessive K(+) loss which would otherwise result from the increased electrogenic Na(+) transport and associated depolarization of the apical membrane in the CCD. In conclusion, mCCD(cl1) cells demonstrate a significant K(+) secretion, probably mediated by ROMK, which is not stimulated by aldosterone but increased by overnight exposure to a high K(+) concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial macular degeneration is a clinically and genetically heterogeneous group of disorders characterized by progressive central vision loss. Here we show that an R373C missense mutation in the prominin 1 gene (PROM1) causes 3 forms of autosomal-dominant macular degeneration. In transgenic mice expressing R373C mutant human PROM1, both mutant and endogenous PROM1 were found throughout the layers of the photoreceptors, rather than at the base of the photoreceptor outer segments, where PROM1 is normally localized. Moreover, the outer segment disk membranes were greatly overgrown and misoriented, indicating defective disk morphogenesis. Immunoprecipitation studies showed that PROM1 interacted with protocadherin 21 (PCDH21), a photoreceptor-specific cadherin, and with actin filaments, both of which play critical roles in disk membrane morphogenesis. Collectively, our results identify what we believe to be a novel complex involved in photoreceptor disk morphogenesis and indicate a possible role for PROM1 and PCDH21 in macular degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) kommt prizipiell in zwei Formen vor. Erstens als integierte virale DNA (endogen vererbt), die in allen Zellen der Maus enthalten ist und zweitens als infektiöse Form, bei der sich die DNA nur im Kern von Brustdrüsenzellen integriert. Die erste Form verhält sich wie ein stummes Gen während die zweite Form aktiv ist, durch Glukocorticoide stimuliert wird und zum Mamma-Karzinom führt. Wir haben beide Typen von viralen Genen molekular geklont und durch Transfektion in verschiedene Zellen in Gewebekultur eingeführt. Wir konnten zeigen, dass sowohl die endogene DNA, wie dir infektiöse DNA in transfektieren Zellen aktiv ist und dass die Expression beider Gene durch Glukocorticoide stimuliert wird. Wir konnten die DNA Squenzen, die für dir Homonstimulierung nötig sind, in einem kleinen Fragment der viralen DNA lokalisieren. Bei der Sequenzanalyse dieses DNA-Stückes haben wir ein neues virales Gen entdeckt, das dir Information für ein Protein von ca. 40000 Moleklargewicht enthählt. Mit Hilfe eines Antikörpers suchen wir in verschiedenen Brustdrüsenzellen und Tumoren nach diesem Proetin, dessen Funktion noch nicht bekannt ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant melanoma accounts for most of the increasing mortality from skin cancer. Melanoma cells were found to express Fas (also called Apo-1 or CD95) ligand (FasL). In metastatic lesions, Fas-expressing T cell infiltrates were proximal to FasL+ tumor cells. In vitro, apoptosis of Fas-sensitive target cells occurred upon incubation with melanoma tumor cells; and in vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation. In contrast, tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL. Thus, FasL may contribute to the immune privilege of tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse models are important tools to decipher the molecular mechanisms of mammary carcinogenesis and to mimic the respective human disease. Despite sharing common phenotypic and genetic features, the proper translation of murine models to human breast cancer remains a challenging task. In a previous study we showed that in the SV40 transgenic WAP-T mice an active Met-pathway and epithelial-mesenchymal characteristics distinguish low- and high-grade mammary carcinoma. To assign these murine tumors to corresponding human tumors we here incorporated the analysis of expression of transcription factor (TF) coding genes and show that thereby a more accurate interspecies translation can be achieved. We describe a novel cross-species translation procedure and demonstrate that expression of unsupervised selected TFs, such as ELF5, HOXA5 and TFCP2L1, can clearly distinguish between the human molecular breast cancer subtypes-or as, for example, expression of TFAP2B between yet unclassified subgroups. By integrating different levels of information like histology, gene set enrichment, expression of differentiation markers and TFs we conclude that tumors in WAP-T mice exhibit similarities to both, human basal-like and non-basal-like subtypes. We furthermore suggest that the low- and high-grade WAP-T tumor phenotypes might arise from distinct cells of tumor origin. Our results underscore the importance of TFs as common cross-species denominators in the regulatory networks underlying mammary carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of conservation between the human and mouse genomes resulted in the identification of a large number of conserved nongenic sequences (CNGs). The functional significance of this nongenic conservation remains unknown, however. The availability of the sequence of a third mammalian genome, the dog, allows for a large-scale analysis of evolutionary attributes of CNGs in mammals. We have aligned 1638 previously identified CNGs and 976 conserved exons (CODs) from human chromosome 21 (Hsa21) with their orthologous sequences in mouse and dog. Attributes of selective constraint, such as sequence conservation, clustering, and direction of substitutions were compared between CNGs and CODs, showing a clear distinction between the two classes. We subsequently performed a chromosome-wide analysis of CNGs by correlating selective constraint metrics with their position on the chromosome and relative to their distance from genes. We found that CNGs appear to be randomly arranged in intergenic regions, with no bias to be closer or farther from genes. Moreover, conservation and clustering of substitutions of CNGs appear to be completely independent of their distance from genes. These results suggest that the majority of CNGs are not typical of previously described regulatory elements in terms of their location. We propose models for a global role of CNGs in genome function and regulation, through long-distance cis or trans chromosomal interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFkappaB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.