229 resultados para Black Skin
Resumo:
A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.
Resumo:
OBJECTIVE: This study was undertaken to investigate how aging affects dermal microvascular reactivity in skin areas differentially exposed to sunlight, and therefore to different degrees of photoaging. METHODS: We assessed, in young (18-30 years, n = 13) and aged males (≥60 years, n = 13), the thigh, forearm, and forehead's skin vasodilatory response to local heating (LTH) with a LDI. In each subject and at each location, local Tskin was brought from 34°C (baseline) to 39 or 41°C for 30 minutes, to effect submaximal vasodilation, with maximal vasodilation then elicited by further heating to 44°C. RESULTS: The CVCs evaluated at baseline and after maximal vasodilation (CVCmax ) were higher in the forehead than in the two other anatomical locations. On all locations, CVCmax decreased with age but less markedly in the forehead compared to the two other locations. When expressed in % of CVCmax , the plateau increase of CVCs in response to submaximal temperatures (39 and 41°C) did not vary with age, and minimally so with location. CONCLUSION: Skin aging, whether intrinsic or combined with photoaging, reduces the maximal vasodilatory capacity of the dermal microcirculation, but not its reactivity to local heating.
Resumo:
The ability to obtain gene expression profiles from human disease specimens provides an opportunity to identify relevant gene pathways, but is limited by the absence of data sets spanning a broad range of conditions. Here, we analyzed publicly available microarray data from 16 diverse skin conditions in order to gain insight into disease pathogenesis. Unsupervised hierarchical clustering separated samples by disease as well as common cellular and molecular pathways. Disease-specific signatures were leveraged to build a multi-disease classifier, which predicted the diagnosis of publicly and prospectively collected expression profiles with 93% accuracy. In one sample, the molecular classifier differed from the initial clinical diagnosis and correctly predicted the eventual diagnosis as the clinical presentation evolved. Finally, integration of IFN-regulated gene programs with the skin database revealed a significant inverse correlation between IFN-β and IFN-γ programs across all conditions. Our study provides an integrative approach to the study of gene signatures from multiple skin conditions, elucidating mechanisms of disease pathogenesis. In addition, these studies provide a framework for developing tools for personalized medicine toward the precise prediction, prevention, and treatment of disease on an individual level.
Resumo:
We report a case of xeroderma pigmentosum in a 9-year-old back Cameroonian boy. The diagnosis was based on typical clinical presentation of the disease: cutaneous atrophy, hypepigmented macules, and areas of depigmentation on sun exposed regions of the skin. Multiple tumoral lesions were localized on the head. Ocular findings were also present: conjunctival hyperemia, peripheral corneal opacification. Excision of the tumors and potoprotection was proposed for this patient. The role of tribal black African marriage traditions in disease transmission is discussed.
Resumo:
Endosomal and cytosolic nucleic acid receptors are important immune sensors required for the detection of infecting or replicating viruses. The intracellular location of these receptors allows viral recognition and, at the same time, avoids unnecessary immune activation to self-nucleic acids that are continuously released by dying host cells. Recent evidence, however, indicates that endogenous factors such as anti-microbial peptides have the ability to break this protective mechanism. Here, we discuss these factors and illustrate how they drive inflammatory responses by promoting immune recognition of self-nucleic acids in skin wounds and inflammatory skin diseases such as psoriasis and lupus.
Resumo:
Summary Background The dose-response between ultraviolet (UV) exposure patterns and skin cancer occurrence is not fully understood. Sun-protection messages often focus on acute exposure, implicitly assuming that direct UV radiation is the key contributor to the overall UV exposure. However, little is known about the relative contribution of the direct, diffuse and reflected radiation components. Objective To investigate solar UV exposure patterns at different body sites with respect to the relative contribution of the direct, diffuse and reflected radiation. Methods A three-dimensional numerical model was used to assess exposure doses for various body parts and exposure scenarios of a standing individual (static and dynamic postures). The model was fed with erythemally weighted ground irradiance data for the year 2009 in Payerne, Switzerland. A year-round daily exposure (08:00-17:00 h) without protection was assumed. Results For most anatomical sites, mean daily doses were high (typically 6·2-14·6 standard erythemal doses) and exceeded the recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15% to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose. Acute diffuse exposures were also observed during cloudy summer days. Conclusions The importance of diffuse UV radiation should not be underestimated when advocating preventive measures. Messages focused on avoiding acute direct exposures may be of limited efficiency to prevent skin cancers associated with chronic exposure.
Resumo:
BACKGROUND AND AIMS: Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant, then it was massively planted by foresters in many countries, but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. METHODS: Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. KEY RESULTS: Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. CONCLUSIONS: This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.
Resumo:
Isotope ratio mass spectrometry (IRMS) has recently made its appearance in the forensic community. This high-precision technology has already been applied to a broad range of forensic fields such as illicit drugs, explosives and flammable liquids, where current, routinely used techniques have limited powers of discrimination. The conclusions drawn from the majority of these IRMS studies appear to be very promising. Used in a comparative process, as in food or drug authentication, the measurement of stable isotope ratios is a new and remarkable analytical tool for the discrimination or the identification of a substance with a definite source or origin. However, the research consists mostly of preliminary studies. The significance of this 'new' piece of information needs to be evaluated in light of a forensic framework to assess the actual potential and validity of IRMS, considering the characteristics of each field. Through the isotopic study of black powder, this paper aims at illustrating the potential of the method and the limitations of current knowledge in stable isotopes when facing forensic problems.
Resumo:
BACKGROUND: Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. Outdoor workers are at particular risk because they spend long working hours outside, may have little shade available and be bound to take their lunch at their workplace. Despite epidemiological evidence of a doubling in risk of squamous cell carcinoma in outdoor workers, the recognition of skin cancer as an occupational disease remains scarce. OBJECTIVE: To assess occupational solar UV doses and its contribution to skin cancer risk. METHODS: A numerical model (SimUVEx) was used to assess occupational and lunch break exposures, characterize exposure patterns and anatomical distribution. Risk of squamous cell carcinoma (SCC) was estimated from an existing epidemiological model. RESULTS: Horizontal body locations received 2.0-2.5 times more UV than vertical locations. Dose associated to lunch outdoor every day was similar to outdoor work one day per week but only half of a seasonal worker. Outdoor workers are associated with an increased risk of SCC but also of frequent acute episodes. CONCLUSION: Occupational solar exposure contributes largely to the overall lifetime UV dose, resulting in an excess risk of SCC. The magnitude of the estimated excess in risk supports the recognition of SCC as an occupational disease.
Resumo:
Nicotine in a smoky indoor air environment can be determined using graphitized carbon black as a solid sorbent in quartz tubes. The temperature stability, high purity, and heat absorption characteristics of the sorbent, as well as the permeability of the quartz tubes to microwaves, enable the thermal desorption by means of microwaves after active sampling. Permeation and dynamic dilution procedures for the generation of nicotine in the vapor phase at low and high concentrations are used to evaluate the performances of the sampler. Tube preparation is described and the microwave desorption temperature is measured. Breakthrough volume is determined to allow sampling at 0.1-1 L/min for definite periods of time. The procedure is tested for the determination of gas and paticulate phase nicotine in sidestream smoke produced in an experimental chamber.
Resumo:
The establishment of legislative rules about explosives in the eighties has reduced the illicit use of military and civilian explosives. However, bomb-makers have rapidly taken advantage of substances easily accessible and intended for licit uses to produce their own explosives. This change in strategy has given rise to an increase of improvised explosive charges, which is moreover assisted by the ease of implementation of the recipes, widely available through open sources. While the nature of the explosive charges has evolved, instrumental methods currently used in routine, although more sensitive than before, have a limited power of discrimination and allow mostly the determination of the chemical nature of the substance. Isotope ratio mass spectrometry (IRMS) has been applied to a wide range of forensic materials. Conclusions drawn from the majority of the studies stress its high power of discrimination. Preliminary studies conducted so far on the isotopic analysis of intact explosives (pre-blast) have shown that samples with the same chemical composition and coming from different sources could be differentiated. The measurement of stable isotope ratios appears therefore as a new and remarkable analytical tool for the discrimination or the identification of a substance with a definite source. However, much research is still needed to assess the validity of the results in order to use them either in an operational prospect or in court. Through the isotopic study of black powders and ammonium nitrates, this research aims at evaluating the contribution of isotope ratio mass spectrometry to the investigation of explosives, both from a pre-blast and from a post-blast approach. More specifically, the goal of the research is to provide additional elements necessary to a valid interpretation of the results, when used in explosives investigation. This work includes a fundamental study on the variability of the isotopic profile of black powder and ammonium nitrate in both space and time. On one hand, the inter-variability between manufacturers and, particularly, the intra-variability within a manufacturer has been studied. On the other hand, the stability of the isotopic profile over time has been evaluated through the aging of these substances exposed to different environmental conditions. The second part of this project considers the applicability of this high-precision technology to traces and residues of explosives, taking account of the characteristics specific to the field, including their sampling, a probable isotopic fractionation during the explosion, and the interferences with the matrix of the site.
Resumo:
Swiss clinical practice guidelines for skin cancer in organ transplant recipients Transplant patients have increased over the last decades. As a consequence of long-term immunosuppression, skin cancer, in particular squamous cell carcinoma (SCC), has become an important problem. Screening and education of potential organ transplant recipients (OTRs) regarding prevention of sun damage and early recognition of skin cancer are important before transplantation. Once transplanted, OTRs should be seen yearly by a dermatologist to ensure compliance with sun avoidance as well as for treatment of precancerosis and SCC. Early removal is the best treatment for SCC. Reduction of immunosuppression, switch to mTOR inhibitors and chemoprevention with acitretin may reduce the incidence of SCC. The dermatological follow-up of OTRs should be integrated into a comprehensive post-transplant management strategy.