230 resultados para trypsin-like serine protease
Resumo:
Toll-like receptors (TLRs) are key mediators of the innate immune response to microbial pathogens. We investigated the role of TLRs in the recognition of Mycobacterium leprae and the significance of TLR2Arg(677)Trp, a recently discovered human polymorphism that is associated with lepromatous leprosy. In mice, TNF-alpha production in response to M. leprae was essentially absent in TLR2-deficient macrophages. Similarly, human TLR2 mediated M. leprae-dependent activation of NF-kappaB in transfected Chinese hamster ovary and human embryonic kidney 293 cells, with enhancement of this signaling in the presence of CD14. In contrast, activation of NF-kappaB by human TLR2Arg(677)Trp was abolished in response to M. leprae and Mycobacterium tuberculosis. The impaired function of this TLR2 variant provides a molecular mechanism for the poor cellular immune response associated with lepromatous leprosy and may have important implications for understanding the pathogenesis of other mycobacterial infections.
Resumo:
Calcineurin is the only known serine-threonine phosphatase under calcium-calmodulin control and key regulator of the immune system. Treatment of patients with calcineurin-inhibitory drugs like cyclosporin A and FK506 to prevent graft rejection dramatically increases the risk of cutaneous squamous cell carcinoma, which is a major cause of death after organ transplants. Recent evidence indicates that suppression of calcineurin signaling, together with its impact on the immune system, exerts direct tumor-promoting effects in keratinocytes, enhancing cancer stem cell potential. The underlying mechanism involves interruption of a double negative regulatory axis, whereby calcineurin and nuclear factors of activated T-cell signaling inhibits expression of ATF3, a negative regulator of p53. The resulting suppression of keratinocyte cancer cell senescence is of likely clinical significance for the many patients under treatment with calcineurin inhibitors and may be of relevance for other cancer types in which altered calcium-calcineurin signaling plays a role.
Resumo:
Glioblastoma (GBM) is a morphologically heterogeneous tumor type with a median survival of only 15 months in clinical trial populations. However, survival varies greatly among patients. As part of a central pathology review, we addressed the question if patients with GBM displaying distinct morphologic features respond differently to combined chemo-radiotherapy with temozolomide. Morphologic features were systematically recorded for 360 cases with particular focus on the presence of an oligodendroglioma-like component and respective correlations with outcome and relevant molecular markers. GBM with an oligodendroglioma-like component (GBM-O) represented 15% of all confirmed GBM (52/339) and was not associated with a more favorable outcome. GBM-O encompassed a pathogenetically heterogeneous group, significantly enriched for IDH1 mutations (19 vs. 3%, p = 0.003) and EGFR amplifications (71 vs. 48%, p = 0.04) compared with other GBM, while co-deletion of 1p/19q was found in only one case and the MGMT methylation frequency was alike (47 vs. 46%). Expression profiles classified most of the GBM-O into two subtypes, 36% (5/14 evaluable) as proneural and 43% as classical GBM. The detection of pseudo-palisading necrosis (PPN) was associated with benefit from chemotherapy (p = 0.0002), while no such effect was present in the absence of PPN (p = 0.86). In the adjusted interaction model including clinical prognostic factors and MGMT status, PPN was borderline nonsignificant (p = 0.063). Taken together, recognition of an oligodendroglioma-like component in an otherwise classic GBM identifies a pathogenetically mixed group without prognostic significance. However, the presence of PPN may indicate biological features of clinical relevance for further improvement of therapy.
Resumo:
OBJECTIVES: The purpose of this study was the qualitative and quantitative assessment of the in vitro effect of HIV-1 protease (PR) mutation 82M on replication capacity and susceptibility to the eight clinically available PR inhibitors (PIs).¦METHODS: The 82M substitution was introduced by site-directed mutagenesis in wild-type subtype B and G strains, as well as reverted back to wild-type in a therapy-failing strain. The recombinant viruses were evaluated for their replication capacity and susceptibility to PIs.¦RESULTS: The single 82M mutation within a wild-type subtype B or G background did not result in drug resistance. However, the in vitro effect of single PR mutations on PI susceptibility is not always distinguishable from wild-type virus, and particular background mutations and polymorphisms are required to detect significant differences in the drug susceptibility profile. Consequently, reverting the 82M mutation back to wild-type (82I) in a subtype G isolate from a patient that failed therapy with multiple other PR mutations did result in significant increases in susceptibility towards indinavir and lopinavir and minor increases in susceptibility towards amprenavir and atazanavir. The presence of the 82M mutation also slightly decreased viral replication, whether it was in the genetic background of subtype B or subtype G.¦CONCLUSIONS: Our results suggest that 82M has an impact on PI susceptibility and that this effect is not due to a compensatory effect on the replication capacity. Because 82M is not observed as a polymorphism in any subtype, these observations support the inclusion of 82M in drug resistance interpretation systems and PI mutation lists.
Resumo:
OBJECTIVE: The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect beta-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS: We performed comparative transcriptomic analysis of islets from control and GipR(-/-);Glp-1-R(-/-) mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS: We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1-induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary beta-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1-induced protection against apoptosis. CONCLUSIONS: An IGF-2/IGF-1 receptor autocrine loop operates in beta-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1-induced protection against apoptosis. These findings may lead to novel ways of preventing beta-cell loss in the pathogenesis of diabetes.
Resumo:
Glucagon-like peptide-1 (GLP-1) stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor linked to activation of the adenylyl cyclase pathway. Here, using insulinoma cell lines, we studied homologous and heterologous desensitization of GLP-1-induced cAMP production. Preexposure of the cells to GLP-1 induced a decrease in GLP-1-mediated cAMP production, as assessed by a 3- to 5-fold rightward shift of the dose-response curve and an approximately 20 percent decrease in the maximal production of cAMP. Activation of protein kinase C by the phorbol ester phorbol 12-myristate 13-acetate (PMA) also induced desensitization of the GLP-1-mediated response, leading to a 6- to 9-fold shift in the EC50 and a 30% decrease in the maximal production of cAMP. Both forms of desensitization were additive, and the protein kinase C inhibitor RO-318220 inhibited PMA-induced desensitization, but not agonist-induced desensitization. GLP-1- and PMA-dependent desensitization correlated with receptor phosphorylation, and the levels of phosphorylation induced by the two agents were additive. Furthermore, PMA-induced, but not GLP-1-induced, phosphorylation was totally inhibited by RO-318220. Internalization of the GLP-1 receptor did not participate in the desensitization induced by PMA, as a mutant GLP-1 receptor lacking the last 20 amino acids of the cytoplasmic tail was found to be totally resistant to the internalization process, but was still desensitized after PMA preexposure. PMA and GLP-1 were not able to induce the phosphorylation of a receptor deletion mutant lacking the last 33 amino acids of the cytoplasmic tail, indicating that the phosphorylation sites were located within the deleted region. The cAMP production mediated by this deletion mutant was not desensitized by PMA and was only poorly desensitized by GLP-1. Together, our results indicate that the production of cAMP and, hence, the stimulation of insulin secretion induced by GLP-1 can be negatively modulated by homologous and heterologous desensitization, mechanisms that involve receptor phosphorylation.
Resumo:
One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.
Resumo:
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.
Resumo:
BACKGROUND: Leprosy is characterized by a spectrum of clinical manifestations that depend on the type of immune response against the pathogen. Patients may undergo immunological changes known as "reactional states" (reversal reaction and erythema nodosum leprosum) that result in major clinical deterioration. The goal of the present study was to assess the effect of Toll-like receptor 2 (TLR2) polymorphisms on susceptibility to and clinical presentation of leprosy. METHODS: Three polymorphisms in TLR2 (597C-->T, 1350T-->C, and a microsatellite marker) were analyzed in 431 Ethiopian patients with leprosy and 187 control subjects. The polymorphism-associated risk of developing leprosy, lepromatous (vs. tuberculoid) leprosy, and leprosy reactions was assessed by multivariate logistic regression models. RESULTS: The microsatellite and the 597C-->T polymorphisms both influenced susceptibility to reversal reaction. Although the 597T allele had a protective effect (odds ratio [OR], 0.34 [95% confidence interval {CI}, 0.17-0.68]; P= .002 under the dominant model), homozygosity for the 280-bp allelic length of the microsatellite strongly increased the risk of reversal reaction (OR, 5.83 [95% CI, 1.98-17.15]; P= .001 under the recessive model). These associations were consistent among 3 different ethnic groups. CONCLUSIONS: These data suggest a significant role for TLR-2 in the occurrence of leprosy reversal reaction and provide new insights into the immunogenetics of the disease.
Resumo:
INTRODUCTION: Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood - in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). METHODS: We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1-219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. RESULTS: Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. CONCLUSION: Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.
Resumo:
Among synthetic vaccines, virus-like particles (VLPs) are used for their ability to induce strong humoral responses. Very little is reported on VLP-based-vaccine-induced CD4(+) T-cell responses, despite the requirement of helper T cells for antibody isotype switching. Further knowledge on helper T cells is also needed for optimization of CD8(+) T-cell vaccination. Here, we analysed human CD4(+) T-cell responses to vaccination with MelQbG10, which is a Qβ-VLP covalently linked to a long peptide derived from the melanoma self-antigen Melan-A. In all analysed patients, we found strong antibody responses of mainly IgG1 and IgG3 isotypes, and concomitant Th1-biased CD4(+) T-cell responses specific for Qβ. Although less strong, comparable B- and CD4(+) T-cell responses were also found specific for the Melan-A cargo peptide. Further optimization is required to shift the response more towards the cargo peptide. Nevertheless, the data demonstrate the high potential of VLPs for inducing humoral and cellular immune responses by mounting powerful CD4(+) T-cell help.
Resumo:
Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.
Resumo:
Accumulating evidence suggests that polymorphisms in Toll-like receptors (TLRs) influence the pathogenesis of mycobacterial infections, including leprosy, a disease whose manifestations depend on host immune responses. Polymorphisms in TLR2 are associated with an increased risk of reversal reaction, but not susceptibility to leprosy itself. We examined whether polymorphisms in TLR4 are associated with susceptibility to leprosy in a cohort of 441 Ethiopian leprosy patients and 197 healthy controls. We found that two single nucleotide polymorphisms (SNPs) in TLR4 (896G>A [D299G] and 1196C>T [T399I]) were associated with a protective effect against the disease. The 896GG, GA and AA genotypes were found in 91.7, 7.8 and 0.5% of leprosy cases versus 79.9, 19.1 and 1.0% of controls, respectively (odds ratio [OR] = 0.34, 95% confidence interval [CI] 0.20-0.57, P < 0.001, additive model). Similarly, the 1196CC, CT and TT genotypes were found in 98.1, 1.9 and 0% of leprosy cases versus 91.8, 7.7 and 0.5% of controls, respectively (OR = 0.16, 95% CI 0.06--.40, P < 0.001, dominant model). We found that Mycobacterium leprae stimulation of monocytes partially inhibited their subsequent response to lipopolysaccharide (LPS) stimulation. Our data suggest that TLR4 polymorphisms are associated with susceptibility to leprosy and that this effect may be mediated at the cellular level by the modulation of TLR4 signalling by M. leprae.