194 resultados para learning organisations
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Learning is predicted to affect manifold ecological and evolutionary processes, but the extent to which animals rely on learning in nature remains poorly known, especially for short-lived non-social invertebrates. This is in particular the case for Drosophila, a favourite laboratory system to study molecular mechanisms of learning. Here we tested whether Drosophila melanogaster use learned information to choose food while free-flying in a large greenhouse emulating the natural environment. In a series of experiments flies were first given an opportunity to learn which of two food odours was associated with good versus unpalatable taste; subsequently, their preference for the two odours was assessed with olfactory traps set up in the greenhouse. Flies that had experienced palatable apple-flavoured food and unpalatable orange-flavoured food were more likely to be attracted to the odour of apple than flies with the opposite experience. This was true both when the flies first learned in the laboratory and were then released and recaptured in the greenhouse, and when the learning occurred under free-flying conditions in the greenhouse. Furthermore, flies retained the memory of their experience while exploring the greenhouse overnight in the absence of focal odours, pointing to the involvement of consolidated memory. These results support the notion that even small, short lived insects which are not central-place foragers make use of learned cues in their natural environments.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
This paper presents the first results of the INTERNORM pilot project funded by the University of Lausanne (2010 - 2014) to support the involvement of civil society organisations (CSO) in two ISO technical committees (TC), the ISO TC 228 on "tourism and related services" and the ISO TC 229 on "nanotechnologies". It analyses how a distinct participatory mechanism can influence the institutional environment of technical diplomacy in which standards are shaped. The project is an attempt to respond to the democratic deficit attested in the field of international standardisation, formally open to civil society participation, but still largely dominated by expert knowledge and market players. Many international standards have direct implications on society as a whole, but CSOs (consumers and environmental associations, trade unions) are largely under-represented in negotiation arenas. The paper draws upon international relations literature on new institutional forms in global governance and studies of participation in science and technology to address three questions: to which extent do CSOs identify participation in standardisation as worth of their mobilisation? How is the pluralisation of knowledge and expertise supporting CSO position during the deliberation? To which extent can CSO access and influence standardisation beyond their consultative role? It argues that there are significant limitations to the rise of civil society participation in such global governance mechanisms. Despite high entry costs into technical diplomacy, participation is not so much a matter of upstream engagement, or of procedure and resources only, than of opportunistic CSOs mobilization, of distinct thematic incentives and concrete outcomes to be expected in standardisation arenas or in the broader use of international standards.
Resumo:
It has been convincingly argued that computer simulation modeling differs from traditional science. If we understand simulation modeling as a new way of doing science, the manner in which scientists learn about the world through models must also be considered differently. This article examines how researchers learn about environmental processes through computer simulation modeling. Suggesting a conceptual framework anchored in a performative philosophical approach, we examine two modeling projects undertaken by research teams in England, both aiming to inform flood risk management. One of the modeling teams operated in the research wing of a consultancy firm, the other were university scientists taking part in an interdisciplinary project experimenting with public engagement. We found that in the first context the use of standardized software was critical to the process of improvisation, the obstacles emerging in the process concerned data and were resolved through exploiting affordances for generating, organizing, and combining scientific information in new ways. In the second context, an environmental competency group, obstacles were related to the computer program and affordances emerged in the combination of experience-based knowledge with the scientists' skill enabling a reconfiguration of the mathematical structure of the model, allowing the group to learn about local flooding.