183 resultados para l1. Compressed Sensing. Magica l1. Propriedadeda Isometria Restrita (RIP). Politopos s-neighborly
Resumo:
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.
Resumo:
UNLABELLED: It is uncertain whether bone mineral density (BMD) can accurately predict fracture in kidney transplant recipients. Trabecular bone score (TBS) provides information independent of BMD. Kidney transplant recipients had abnormal bone texture as measured by lumbar spine TBS, and a lower TBS was associated with incident fractures in recipients. INTRODUCTION: Trabecular bone score (TBS) is a texture measure derived from dual energy X-ray absorptiometry (DXA) lumbar spine images, providing information independent of bone mineral density. We assessed characteristics associated with TBS and fracture outcomes in kidney transplant recipients. METHODS: We included 327 kidney transplant recipients from Manitoba, Canada, who received a post-transplant DXA (median 106 days post-transplant). We matched each kidney transplant recipient (mean age 45 years, 39 % men) to three controls from the general population (matched on age, sex, and DXA date). Lumbar spine (L1-L4) DXA images were used to derive TBS. Non-traumatic incident fracture (excluding hand, foot, and craniofacial) (n = 31) was assessed during a mean follow-up of 6.6 years. We used multivariable linear regression models to test predictors of TBS, and multivariable Cox proportional hazard regression was used to estimate hazard ratios (HRs) per standard deviation decrease in TBS to express the gradient of risk. RESULTS: Compared to the general population, kidney transplant recipients had a significantly lower lumbar spine TBS (1.365 ± 0.129 versus 1.406 ± 0.125, P < 0.001). Multivariable linear regression revealed that receipt of a kidney transplant was associated with a significantly lower mean TBS compared to controls (-0.0369, 95 % confidence interval [95 % CI] -0.0537 to -0.0202). TBS was associated with fractures independent of the Fracture Risk Assessment score including BMD (adjusted HR per standard deviation decrease in TBS 1.64, 95 % CI 1.15-2.36). CONCLUSION: Kidney transplant recipients had abnormal bone texture as assessed by TBS and a lower lumbar spine TBS was associated with fractures in recipients.
Resumo:
Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.