212 resultados para dispersal guilds
Resumo:
Abstract The giant hogweed (Heracleum mantegazzianum) has successfully invaded 19 European countries as well as parts of North America. It has become a problematic species due to its ability to displace native flora and to cause public health hazards. Applying population genetics to species invasion can help reconstruct invasion history and may promote more efficient management practice. We thus analysed levels of genetic variation and population genetic structure of H. mantegazzianum in an invaded area of the western Swiss Alps as well as in its native range (the Caucasus), using eight nuclear microsatellite loci together with plastid DNA markers and sequences. On both nuclear and plastid genomes, native populations exhibited significantly higher levels of genetic diversity compared to invasive populations, confirming an important founder event during the invasion process. Invasive populations were also significantly more differentiated than native populations. Bayesian clustering analysis identified five clusters in the native range that corresponded to geographically and ecologically separated groups. In the invaded range, 10 clusters occurred. Unlike native populations, invasive clusters were characterized by a mosaic pattern in the landscape, possibly caused by anthropogenic dispersal of the species via roads and direct collection for ornamental purposes. Lastly, our analyses revealed four main divergent groups in the western Swiss Alps, likely as a consequence of multiple independent establishments of H. mantegazzianum.
Resumo:
Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.
Resumo:
Species richness and geographical phenotypic variation in East African lacustrine cichlids are often correlated with ecological specializations and limited dispersal. This study compares mitochondrial and microsatellite genetic diversity and structure among three sympatric rock-dwelling cichlids of Lake Tanganyika, Eretmodus cyanostictus, Tropheus moorii, and Ophthalmotilapia ventralis. The species represent three endemic, phylogenetically distinct tribes (Eretmodini, Tropheini, and Ectodini), and display divergent ecomorphological and behavioral specialization. Sample locations span both continuous, rocky shoreline and a potential dispersal barrier in the form of a muddy bay. High genetic diversity and population differentiation were detected in T. moorii and E. cyanostictus, whereas much lower variation and structure were found in O. ventralis. In particular, while a 7-km-wide muddy bay curtails dispersal in all three species to a similar extent, gene flow along mostly continuous habitat appeared to be controlled by distance in E. cyanostictus, further restricted by site philopatry and/or minor habitat discontinuities in T. moorii, and unrestrained in O. ventralis. In contrast to the general pattern of high gene flow along continuous shorelines in rock-dwelling cichlids of Lake Malawi, our study identifies differences in population structure among stenotopic Lake Tanganyika species. The amount of genetic differentiation among populations was not related to the degree of geographical variation of body color, especially since more phenotypic variation is observed in O. ventralis than in the genetically highly structured E. cyanostictus.
Resumo:
BACKGROUND: The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure RESULTS: The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. CONCLUSIONS: The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa.
Resumo:
A cornerstone result of sociobiology states that limited dispersal can induce kin competition to offset the kin selected benefits of altruism. Several mechanisms have been proposed to circumvent this dilemma but all assume that actors and recipients of altruism interact during the same time period. Here, this assumption is relaxed and a model is developed where individuals express an altruistic act, which results in posthumously helping relatives living in the future. The analysis of this model suggests that kin selected benefits can then feedback on the evolution of the trait in a way that promotes altruistic helping at high rates under limited dispersal. The decoupling of kin competition and kin selected benefits results from the fact that by helping relatives living in the future, an actor is helping individuals that are not in direct competition with itself. A direct consequence is that behaviours which actors gain by reducing the common good of present and future generations can be opposed by kin selection. The present model integrates niche-constructing traits with kin selection theory and delineates demographic and ecological conditions under which altruism can be selected for; and conditions where the 'tragedy of the commons' can be reduced.
Resumo:
SUMMARY : Human-induced habitat fragmentation constitutes a major threat to biodiversity. Small and isolated populations suffer from increased stochasticity and from limited rescue effects. These two factors may be sufficient to cause local extinctions but fragmentation induces some genetic consequences that can also contribute significantly to extinction risks. Increased genetic drift reduces the effectiveness of selection against deleterious mutations, leading to their progressive accumulation. Drift also decreases both the standing genetic variation and the rate of fixation of beneficial mutations, limiting the evolutionary potential of isolated populations. Demography and genetics further interact and feed back on each other, progressively driving fragmented populations into "extinction vortices". The aim of the thesis was to better understand the processes occurring in fragmented populations. For this, I combined simulation studies and empirical data from three species that live in structured habitats. Chapter 1 and 2 investigate the demography of two shrew species in fragmented habitats. I showed that connectivity and habitat quality strongly affect the demography of the greater white-tooted shrew, although demographic stochasticity was extremely high. I also demonstrated that habitat fragmentation is one of the leading factors allowing the local coexistence of two competing shrew species. Chapter 3 and 4 focus on measuring connectivity in fragmented populations based on genetic data. In particular, I showed that genetic data can be used to detect the landscape elements impeding dispersal. In Chapter 5 that deals with the accumulation of deleterious mutations in fragmented populations, I demonstrated that mutation accumulation, as well a time to extinction, can be predicted from simple demographic and genetic measures. In the last two chapters, I monitored individual reproductive success in an isolated tree frogs population. These data allowed quantifying the effective population size, a measure closely linked to population evolutionary potential. To conclude, this thesis brings some new insights into the processes occurring in fragmented populations, and I hope it will contribute to the improvement of the management and conservation of fragmented populations.
Resumo:
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.
Resumo:
Background: Arundinarieae are a large tribe of temperate woody bamboos for which phylogenetics are poorly understood because of limited taxon sampling and lack of informative characters. Aims: This study assessed phylogenetic relationships, origins and classification of Arundinarieae. Methods: DNA sequences (plastid trnL-F; nuclear ITS) were used for parsimony and Bayesian inference including 41 woody bamboo taxa. Divergence dates were estimated using a relaxed Bayesian clock. Results: Arundinarieae were monophyletic but their molecular divergence was low compared to the tropical Bambuseae. Ancestors of the Arundinarieae lineage were estimated to have diverged from the other bamboos 23 (15-30) million years ago (Mya). However, the Arundinarieae radiation occurred 10 (6-16) Mya compared to 18 (11-25) Mya for the tropical Bambuseae. Some groups could be defined within Arundinarieae, but they do not correspond to recognised subtribes such as Arundinariinae or Shibataeinae. Conclusions: Arundinarieae are a relatively ancient bambusoid lineage that underwent a rapid radiation in the late Miocene. The radiation coincides with the continental collision of the Indo-Australian and Eurasian Plates. Arundinarieae are distributed primarily in East Asia and the Himalayas to northern Southeast Asia. It is unknown whether they were present in Asia long before their radiation, but we believe recent dispersal is a more likely scenario. Keywords: Arundinarieae; Bambuseae; internal transcribed spacer (ITS); molecular clock; phylogenetics; radiation; temperate bamboos; Thamnocalaminae; trnL-F
Resumo:
1. Biogeographical models of species' distributions are essential tools for assessing impacts of changing environmental conditions on natural communities and ecosystems. Practitioners need more reliable predictions to integrate into conservation planning (e.g. reserve design and management). 2. Most models still largely ignore or inappropriately take into account important features of species' distributions, such as spatial autocorrelation, dispersal and migration, biotic and environmental interactions. Whether distributions of natural communities or ecosystems are better modelled by assembling individual species' predictions in a bottom-up approach or modelled as collective entities is another important issue. An international workshop was organized to address these issues. 3. We discuss more specifically six issues in a methodological framework for generalized regression: (i) links with ecological theory; (ii) optimal use of existing data and artificially generated data; (iii) incorporating spatial context; (iv) integrating ecological and environmental interactions; (v) assessing prediction errors and uncertainties; and (vi) predicting distributions of communities or collective properties of biodiversity. 4. Synthesis and applications. Better predictions of the effects of impacts on biological communities and ecosystems can emerge only from more robust species' distribution models and better documentation of the uncertainty associated with these models. An improved understanding of causes of species' distributions, especially at their range limits, as well as of ecological assembly rules and ecosystem functioning, is necessary if further progress is to be made. A better collaborative effort between theoretical and functional ecologists, ecological modellers and statisticians is required to reach these goals.
Resumo:
Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so.
Resumo:
Three populations of the European water shrew Neomy fodiens have been observed by live-trapping, one of them during twelve months. During highest populations density a local maximum of 21 individuals have been caught. Recapture frequency from month to month was less than 50%, probably due to a weak trappability and an important dispersal behaviour. During the winter all three populations disappeared. Change in habitat or change in behaviour might be responsible for the lack of trapping siccess in the cold period.
Resumo:
1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.
Resumo:
Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.
Resumo:
With regard to semi-aquatic mammals, Schröpfer & Stubbe (1992) distinguished three riparian guilds: the herbivores with the water vole and the beaver; the megacarnivores with the mink and the otter; and the macrocarnivores with water shrews and desmans. Among water shrews, the evolution of aquatic foraging behaviour occurred several times: Nectogale and Chimarrogale in Asia, several species of the genus Sorex in America, and Neomys in Eurasia (Churchfield, 1990). The fairly common European water shrew N. fodiens is the best known. However, the reports on the degree of adaptation to the water habitat are conflicting. Therefore some important findings from the literature are reviewed in this introduction, whereas new data are presented in the following sections. The swimming locomotion of water shrews was analysed by Ruthardt & Schröpfer (1985) and Köhler (1991), and the related morphological adaptation were reviewed by Hutterer (1985) and Churchfield (this volume pp. 49-51). They obviously present a compromise between the requirements for activity on land and in the water. Thermoregulation is a major problem for semi-aquatic mammals, because heat conductance in water is 25-fold greater than in air (Calder, 1969). According to this author, the body temperature of immersed American Sorex palustris dropped by a rate of 2.8 °C per min. However, this may be an experimental artefact, because Neomys fodiens can maintain its body temperature at 37 °C during an immersion of 6 min (Vogel, 1990).