230 resultados para brain-computer interfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with Temporal Lobe Epilepsy (TLE) suffer from widespread subtle white matter abnormalities and abnormal functional connectivity extending beyond the affected lobe, as revealed by Diffusion Tensor MR Imaging, volumetric and functional MRI studies. Diffusion Spectrum Imaging (DSI) is a diffusion imaging technique with high angular resolution for improving the mapping of white matter pathways. In this study, we used DSI, connectivity matrices and topological measures to investigate how the alteration in structural connectivity influences whole brain structural networks. Eleven patients with right-sided TLE and hippocampal sclerosis and 18 controls underwent our DSI protocol at 3T. The cortical and subcortical grey matters were parcellated into 86 regions of interest and the connectivity between every region pair was estimated using global tractography and a connectivity matrix (the adjacency matrix of the structural network). We then compared the networks of patients and controls using topological measures. In patients, we found a higher characteristic path length and a lower clustering coefficient compared to controls. Local measures at node level of the clustering and efficiency showed a significant difference after a multiple comparison correction (Bonferroni). These significant nodes were located within as well outside the temporal lobe, and the localisation of most of them was consistent with regions known to be part of epileptic networks in TLE. Our results show altered connectivity patterns that are concordant with the mapping of functional epileptic networks in patients with TLE. Further studies are needed to establish the relevance of these findings for the propagation of epileptic activity, cognitive deficits in medial TLE and outcome of epilepsy surgery in individual patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subthalamic nucleus deep brain stimulation (STN-DBS) is a recognized treatment for advanced and severe forms of Parkinson's Disease. The procedure improves motor signs and often allows a reduction of the medication. The impact of the procedure on cognitive and neuropsychiatric signs of the disease is more debated and there is an international consensus for the need of a multidisciplinary evaluation of patients undergoing such programs, including a neuropsychiatric assessment. We present a review of the literature as well as the experience at our centre focused on the short and long term outcome on mood following STN-DBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La créatine joue un rôle essentiel dans le métabolisme cellulaire par sa conversion, par la creatine kinase, en phosphocreatine permettant la régénération de l'ATP. La synthèse de créatine, chez les mammifères, s'effectue par une réaction en deux étapes impliquant Γ arginine: glycine amidinotransférase (AGAT) et la guanidinoacétate méthyltransférase (GAMT). L'entrée de créatine dans les cellules s'effectue par son transporteur, SLC6A8. Les déficiences en créatine, dues au déficit en GAMT, AGAT ou SLC6A8, sont fréquentes et caractérisées par une absence ou une forte baisse de créatine dans le système nerveux central. Alors qu'il est connu que AGAT, GAMT et SLC6A8 sont exprimés par le cerveau, les conséquences des déficiences en créatine sur les cellules nerveuses sont peu comprises. Le but de ce travail était de développer de nouveaux modèles expérimentaux des déficiences en Cr dans des cultures 3D de cellules nerveuses de rat en agrégats au moyen de l'interférence à l'ARN appliquée aux gènes GAMT et SLC6A8. Des séquences interférentes (shRNAs) pour les gènes GAMT et SLC6A8 ont été transduites par des vecteurs viraux AAV (virus adéno-associés), dans les cellules nerveuses en agrégats. Nous avons ainsi démontré une baisse de l'expression de GAMT au niveau protéique (mesuré par western blot), et ARN messager (mesuré par qPCR) ainsi qu'une variation caractérisitique de créatine et guanidinoacétate (mesuré par spectrométrie de masse). Après avoir validé nos modèles, nous avons montré que les knockdown de GAMT ou SLC6A8 affectent le développement des astrocytes et des neurones ou des oligodendrocytes et des astrocytes, respectivement, ainsi qu'une augmentation de la mort cellulaire et des modifications dans le pattern d'activation des voies de signalisation impliquant caspase 3 et p38 MAPK, ayant un rôle dans le processus d'apoptose. - Creatine plays essential roles in energy metabolism by the interconversion, by creatine kinase, to its phosphorylated analogue, phosphocreatine, allowing the regeneration of ATP. Creatine is synthesized in mammals by a two step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine is taken up by cells by a specific transporter, SLC6A8. Creatine deficiency syndromes, due to defects in GAMT, AGAT and SLC6A8, are among the most frequent inborn errors of metabolism, and are characterized by an absence or a severe decrease of creatine in central nervous system, which is the main tissue affected. While it is known that AGAT, GAMT and SLC6A8 are expressed in CNS, many questions remain on the specific effects of AGAT, GAMT and SLC6A8 deficiencies on brain cells. Our aim was to develop new experimental models of creatine deficiencies by knockdown of GAMT and SLC6A8 genes by RNAi in 3D organotypic rat brain cell cultures in aggregates. Specific shRNAs for the GAMT and SLC6A8 genes were transduced in brain cell aggregates by adeno-associated viruses (AAV). The AAV-transduced shRNAs were able to efficiently knockdown the expression of our genes of interest, as shown by a strong decrease of protein by western blotting, a decrease of mRNA by qPCR or characteristic variations of creatine and guanidinoacetate by tandem mass spectrometry. After having validated our experimental models, we have also shown that GAMT and SLC6A8 knockdown affected the development of astrocytes and neurons or oligodendrocytes and astrocytes, respectively. We also observed an increase of cell death and variations in activation pattern of caspase 3 and p38 MAPK pathways, involved in apoptosis, in our experimental model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To report the clinical and genetic study of patients with autosomal dominant aniridia. METHODS: We studied ten patients with aniridia from three families of Egyptian origin. All patients underwent full ophthalmologic, general and neurological examination, and blood drawing. Cerebral magnetic resonance imaging was performed in the index case of each family. Genomic DNA was prepared from venous leukocytes, and direct sequencing of all the exons and intron-exon junctions of the Paired Box gene 6 (PAX6) was performed after PCR amplification. Phenotype description, including ophthalmic and cerebral anomalies, mutation detection in PAX6 and phenotype-genotype correlation was acquired. RESULTS: Common features observed in the three families included absence of iris tissue, corneal pannus with different degrees of severity, and foveal hypoplasia with severely reduced visual acuity. In Families 2 and 3, additional findings, such as lens dislocation, lens opacities or polar cataract, and glaucoma, were observed. We identified two novel (c.170-174delTGGGC [p.L57fs17] and c.475delC [p.R159fs47]) and one known (c.718C>T [p.R240X]) PAX6 mutations in the affected members of the three families. Systemic and neurological examination was normal in all ten affected patients. Cerebral magnetic resonance imaging showed absence of the pineal gland in all three index patients. Severe hypoplasia of the brain anterior commissure was associated with the p.L57fs17 mutation, absence of the posterior commissure with p.R159fs47, and optic chiasma atrophy and almost complete agenesis of the corpus callosum with p.R240X. CONCLUSIONS: We identified two novel PAX6 mutations in families with severe aniridia. In addition to common phenotype of aniridia and despite normal neurological examination, absence of the pineal gland and interhemispheric brain anomalies were observed in all three index patients. The heterogeneity of PAX6 mutations and brain anomalies are highlighted. This report emphasizes the association between aniridia and brain anomalies with or without functional impact, such as neurodevelopment delay or auditory dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials/Methods: Four patients who underwent whole-brain radiotherapy (WBRT) and simultaneous integrated boost (SIB) between August 2010 and February 2011 were included to this study. Their age were 60, 61, 65, and 70 years. Primary diagnosis was infiltrative ductal breast cancer in two patients, sigmoid adenocarcinoma in one, and transitional bladder cancer in the other patient. All patients underwent cranial surgery but not all of the metastases were operated in 2 patients. All but one (five metastases) patient presented with single brain metastasis. In 2 of the 4 patients, hippocampus was spared contralaterally due to vicinity of the lesions to unilateral hippocampus. Planning irradiation dose was 30 Gy in 10 fractions for WBRT and 40 Gy in 10 fractions for SIB over two weeks in three patients. In one patient, WBRT and boost doses were 36Gy and 50.4 Gy in 18 fractions. Our maximum dose constraints for hippocampus and eyes were 10 and 20 Gy, respectively. All organs were contoured manually. Hippocampi were contoured according to published guidelines, and 5-mm margin expansion was used for hippocampal avoidance volume. All plans utilized a field width of 2.5 cm. Modulation factors ranged between 2 and 3.5. A pitch of 0,287 was used for all patients. All plans were evaluated according to conformity index (CI), homogeneity index (HI), target coverage (TC), and mean normalized total dose (NTDmean). An alpha/beta ratio of 2 was assumed for the hippocampus.Results: Median planning target volume (PTV) for metastases was 17.47 cc.Median hippocampal avoidance volume was 14.73 cc (range, 9.25-16.18 cc). Median average hippocampaldose was 11.84 Gy (range, 10.14-21.01 Gy). PTVs were fully covered with more than 95% of the prescribed dose for all patients. With a median follow-up time of 6 months (range, 3-9 months), all patients were alive without recurrent intracranial disease. To date, no neurocognitive decline reported in any of the patients.Conclusions: Preclinical evidence suggests that hippocampal sparing during cranial irradiation may mitigate neurocognitive decline. Using HT, we significantly reduced the mean dose to the hippocampus without jeopardizing coverage of metastases and whole brain.