261 resultados para Variety of speechs
Resumo:
Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure (F(ST)) and within-deme heterozygosity (H(S)). A similar part of variance in median time to extinction was explained by a combination of local population size (N) and heterozygosity (H(S)). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.
Resumo:
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.
Resumo:
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Resumo:
During the last two decades, endoscopic endonasal approach has completed the minimally invasive skull base surgery armamentarium. Endoscopic endonasal skull base surgery (EESBS) was initially developed in the field of pituitary adenomas, and gained an increasing place for the treatment of a wide variety of skull base pathologies, extending on the midline from crista galli process to the occipitocervical junction and laterally to the parasellar areas and petroclival apex. Until now, most studies are retrospective and lack sufficient methodological quality to confirm whether the endoscopic endonasal pituitary surgery has better results than the microsurgical trans-sphenoidal classical approach. The impressions of the expert teams show a trend toward better results for some pituitary adenomas with the endoscopic endonasal route, in terms of gross total resection rate and probably more comfortable postoperative course for the patient. Excepting intra- and suprasellar pituitary adenomas, EESBS seems useful for selected lesions extending onto the cavernous sinus and Meckel's cave but also for clival pathologies. Nevertheless, this infatuation toward endoscopic endonasal approaches has to be balanced with the critical issue of cerebrospinal fluid leaks, which constitutes actually the main limit of this approach. Through their experience and a review of the literature, the authors aim to present the state of the art of this approach as well as its limits.
Resumo:
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
Resumo:
Wound healing proceeds by the concerted action of a variety of signals that have been well identified. However, the mechanisms integrating them and coordinating their effects are poorly known. Herein, we reveal how PPARbeta/delta (PPAR: peroxisome proliferator-activated receptor) follows a balanced pattern of expression controlled by a crosstalk between inflammatory cytokines and TGF-beta1. Whereas conditions that mimic the initial inflammatory events stimulate PPARbeta/delta expression, TGF-beta1/Smad3 suppresses this inflammation-induced PPARbeta/delta transcription, as seen in the late re-epithelialization/remodeling events. This TGF-beta1/Smad3 action involves an inhibitory effect on AP-1 activity and DNA binding that results in an inhibition of the AP-1-driven induction of the PPARbeta/delta promoter. As expected from these observations, wound biopsies from Smad3-null mice showed sustained PPARbeta expression as compared to those of their wild-type littermates. Together, these findings suggest a mechanism for setting the necessary balance between inflammatory signals, which trigger PPARbeta/delta expression, and TGF-beta1/Smad3 that governs the timely decrease of this expression as wound healing proceeds to completion.
Resumo:
Cyclosporine A is a poorly water-soluble, immunosuppressive drug used to treat a variety of ocular diseases. Its limited solubility makes challenging the development of a cyclosporine A-based eye drop for ocular topical application. Based on the prodrug strategy, the practically insoluble cyclosporine A was converted into a freely soluble prodrug. Such a water-soluble prodrug made it possible to develop water-based concentrated eye drops. The prodrug formulations were tested for their ex vivo permeation and in vivo distribution at three concentrations (equivalent to 0.05%, 0.50% and 2.00% w/v cyclosporine A). The ex vivo permeation experiments were performed on corneal and conjunctival epithelia. The in vivo distribution evaluated the total cyclosporine A present in the ocular structures as well as in serum, spleen and cervical lymphatic ganglions. Each prodrug formulation was compared to conventionally used cyclosporine A eye drops at an equivalent concentration. The experimental results showed that the tested eye drops behaved differently. The prodrug formulation was characterized by the following: i) preferential conjunctival penetration, ii) an interesting capacity to create large tissue deposits and iii) a lower risk of systemic complications and immunosuppression. The prodrug aqueous eye drop was demonstrated to be a patient-friendly option for the treatment of ocular diseases requiring high ocular levels of cyclosporine A, pushing the boundaries of the current therapeutic arsenal.
Resumo:
One of the most intriguing functions of the brain is the ability to learn and memorize. The mechanism through which memory and learning are expressed requires the activation of NMDA receptors (NMDARs). These molecular entities are placed at the postsynaptic density of excitatory synapses and their function is tightly controlled by the actions of several modulators at the extracellular, intracellular and pore sites. A large part of the intracellular modulation comes from the action of G-protein coupled receptors (GPCRs). Through intracellular cascades typically involving kinases and phosphatases, GPCRs potentiate or inhibit NMDARs, controlling the conductive state but also the trafficking within the synapse. The GPCRs are involved in the modulation of a variety of brain functions. Many of them control cognition, memory and learning performance, therefore, their effects on NMDARs are extensively studied. The orexinergic system signals through GPCRs and it is well known for the regulation of waking, feeding, reward and autonomic functions. Moreover, it is involved in potentiating hippocampus-related cognitive tasks. Orexin receptors and fibers are present within the hippocampus, but whether these directly modulate hippocampal cells and synapses has not yet been determined. During my thesis, I studied orexinergic actions on excitatory synaptic transmission via whole-cell patch-clamp recordings in rat acute hippocampal slices. I observed that exogenously applied orexin-A (ox-A) exerted a strong inhibitory action on NMDAR-mediated synaptic potentials at mossy fiber (MF)-CA3 synapses, by postsynaptically activating orexin-2 receptors, a minor inhibition at Schaffer collateral-CAl synapses and did not affect other synapses with the CA3 area. Moreover, I demonstrated that the susceptibility of NMDARs to ox- A depends on the tone of endogenous orexin known to fluctuate during the day-night cycle. In fact, in slices prepared during the active period of the rats, when endogenous orexin levels are high, NMDAR-currents were not affected by exogenously applied ox-A. The inhibitory effect of ox-A was, however, reverted when interfering with the orexinergic system through intraperitoneal injections of almorexant, a dual orexin receptor antagonist, during the active phase prior to slice preparation. This thesis work suggests that the orexinergic system regulates NMDAR-dependent information flow through select hippocampal pathways depending on the time-of-day. The specific orexinergic modulation of NMDARs at MFs dampens the excitability of the hippocampal circuit and could impede the mechanisms related to memory formation, possibly also following extended periods of waking. -- La capacité d'apprentissage et de mémorisation est une des fonctions les plus intrigantes de notre cerveau. Il a été montré qu'elles requièrent l'activation des récepteurs NMDA (NMDARs). Ces entités moléculaires sont présentes au niveau de la densité post-synaptique des synapses excitatrices et leur fonction est étroitement contrôlée par l'action de nombreux modulateurs au niveau extracellulaire, intracellulaire et membranaire de ces récepteurs. Une grande partie de la modulation intracellulaire s'effectue via l'action de récepteurs couplés aux protéines G (GPCRs). Grace à leurs cascades intracellulaires typiquement impliquant des kinases et des phosphatases, les GPCRs favorisent l'activation ou l'inhibition des NMDARs, contrôlant ainsi leur perméabilité mais aussi leur mouvement à la synapse. Les GPCRs sont impliquées dans de nombreuses fonctions cérébrales telles que la cognition, la mémoire ainsi que la capacité d'apprentissage c'est pour cela que leurs effets sur les NMDARs sont très étudiés. Le système orexinergique fait intervenir ces GPCRs et est connu par son rôle dans la régulation de fonctions physiologiques telles que l'éveil, la prise alimentaire, la récompense ainsi que d'autres fonctions du système nerveux autonome. De plus, ce système est impliqué dans la régulation de tâches cognitives liées à l'hippocampe. Bien que les fibres et les récepteurs à l'orexine soient présents dans l'hippocampe, leur mécanisme d'action sur les cellules et les synapses de l'hippocampe n'a pas encore été élucidé. Durant ma thèse, je me suis intéressée aux effets de l'orexine sur la transmission synaptique excitatrice en utilisant la méthode d'enregistrement en patch-clamp en configuration cellule entière sur des tranches aiguës d'hippocampes de rats. J'ai observé que l'application exogène d'orexine A d'une part inhibe fortement les courants synaptiques dépendants de l'activation des NMDARs au niveau de la synapse entre les fibres moussues et CA3 via l'activation post-synaptique des orexine récepteurs 2 mais d'autre part n'inhibe que de façon mineure la synapse entre les collatérales de Schaffer et CAI et n'affecte pas les autres synapses impliquant CA3. J'ai également démontré que la sensibilité des NMDARs à l'orexine A dépend de sa concentration endogène qui fluctue durant le cycle éveil-sommeil. En effet, lorsque les coupes d'hippocampes sont préparées durant la période active de l'animal correspondant à un niveau endogène d'orexine élevé, l'application exogène d'orexine A n'a aucun effet sur les courants dépendants de l'activation des NMDARs. Cependant, l'injection dans le péritoine, durant la phase active de l'animal, d'un antagoniste des orexine récepteurs, l'almorexant, va supprimer l'effet inhibiteur de l'orexine A. Les résultats de ma thèse suggèrent donc que le système orexinergique module les informations véhiculées par les NMDARs via des voies de signalisation sélectives de l'hippocampe en fonction du moment de la journée. La modulation orexinergique des NMDARs au niveau des fibres moussues diminue ainsi l'excitabilité du circuit hippocampal et pourrait entraver les mécanismes liés à la formation de la mémoire, potentiellement après de longues périodes d'éveil.
Resumo:
Superantigens have been defined in a variety of infectious particles such as bacteria and viruses. These superantigens have the capacity to stimulate a large percentage of the host T cells by interacting specifically with the T-cell receptor V beta chain which is shared by about 1-20% of mature T cells. The recent discovery that mammary tumour viruses express such superantigens enabled the analysis of the retroviral life cycle and led to questions about the role of superantigen in amplification of the infection.
Resumo:
A large variety of cancer vaccines have undergone extensive testing in early-phase clinical trials. A limited number have also been tested in randomized phase II clinical trials. Encouraging trends toward increased survival in the vaccine arms have been recently observed for 2 vaccine candidates in patients with non-small-cell lung cancer. These have provided the impetus for the initiation of phase III trials in large groups of patients with lung cancer. These vaccines target 2 antigens widely expressed in lung carcinomas: melanoma-associated antigen 3, a cancer testis antigen; and mucin 1, an antigen overexpressed in a largely deglycosylated form in advanced tumors. Therapeutic cancer vaccines aim at inducing strong CD8 and CD4 T-cell responses. The majority of vaccines recently tested in phase I clinical trials show efficacy in terms of induction of specific tumor antigen immunity. However, clinical efficacy remains to be determined but appears limited. Efforts are thus aimed at understanding the basis for this apparent lack of effect on tumors. Two major factors are involved. On one hand, current vaccines are suboptimal. Strong adjuvant agents and appropriate tumor antigens are needed. Moreover, dose, route, and schedule also need optimization. On the other hand, it is now clear that large tumors often present a tolerogenic microenvironment that hampers effective antitumor immunity. The partial understanding of the molecular pathways leading to functional inactivation of T cells at tumor sites has provided new targets for intervention. In this regard, blockade of cytotoxic T-lymphocyte antigen-4 and programmed death-1 with humanized monoclonal antibodies has reached the clinical testing stage. In the future, more potent cancer vaccines will benefit from intense research in antigen discovery and adjuvant agents. Furthermore, it is likely that vaccines need to be combined with compounds that reverse major tolerogenic pathways that are constitutively active at the tumor site. Developing these combined approaches to vaccination in cancer promises new, exciting findings and, at the same time, poses important challenges to academic research institutions and the pharmaceutical industry.
Resumo:
It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.
Resumo:
Objectives To consider the various specific substances-taking activities in sport an examination of three psychological models of doping behaviour utilised by researchers is presented in order to evaluate their real and potential impact, and to improve the relevance and efficiency of anti-doping campaigns. Design Adopting the notion of a "research program" (Lakatos, 1978) from the philosophy of science, a range of studies into the psychology of doping behaviour are classified and critically analysed. Method Theoretical and practical parameters of three research programs are critically evaluated (i) cognitive; (ii) drive; and (iii) situated-dynamic. Results The analysis reveals the diversity of theoretical commitments of the research programs and their practical consequences. The «cognitive program» assumes that athletes are accountable for their acts that reflect the endeavour to attain sporting and non-sporting goals. Attitudes, knowledge and rational decisions are understood to be the basis of doping behaviour. The «drive program» characterises the variety of traces and consequences on psychological and somatic states coming from athlete's experience with sport. Doping behaviour here is conceived of as a solution to reduce unconscious psychological and somatic distress. The «situated-dynamic program» considers a broader context of athletes' doping activity and its evolution during a sport career. Doping is considered as emergent and self-organized behaviour, grounded on temporally critical couplings between athletes' actions and situations and the specific dynamics of their development during the sporting life course. Conclusions These hypothetical, theoretical and methodological considerations offer a more nuanced understanding of doping behaviours, making an effective contribution to anti-doping education and research by enabling researchers and policy personnel to become more critically reflective about their explicit and implicit assumptions regarding models of explanations for doping behaviour.
Resumo:
The present research studies the spatial patterns of the distribution of the Swiss population (DSP). This description is carried out using a wide variety of global spatial structural analysis tools such as topological, statistical and fractal measures, which enable the estimation of the spatial degree of clustering of a point pattern. A particular attention is given to the analysis of the multifractality to characterize the spatial structure of the DSP at different scales. This will be achieved by measuring the generalized q-dimensions and the singularity spectrum. This research is based on high quality data of the Swiss Population Census of the Year 2000 at a hectometric resolution (grid 100 x 100 m) issued by the Swiss Federal Statistical Office (FSO).
Resumo:
A variety of studies have demonstrated enhanced blood oxygenation level dependent responses to auditory and tactile stimuli within occipital cortex as a result of early blindness. However, little is known about the organizational principles that drive this cross-modal plasticity. We compared BOLD responses to a wide variety of auditory and tactile tasks (vs. rest) in early-blind and sighted subjects. As expected, cross-modal responses were larger in blind than in sighted subjects in occipital cortex for all tasks (cross-modal plasticity). Within both blind and sighted subject groups, we found patterns of cross-modal activity that were remarkably similar across tasks: a large proportion of cross-modal responses within occipital cortex are neither task nor stimulus specific. We next examined the mechanisms underlying enhanced BOLD responses within early-blind subjects. We found that the enhancement of cross-modal responses due to early blindness was best described as an additive shift, suggesting that cross-modal plasticity within blind subjects does not originate from either a scaling or unmasking of cross-modal responsivities found in sighted subjects.
Resumo:
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.