195 resultados para Stream flow
Resumo:
River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.
Long-term continuous-flow left ventricular assist devices (LVAD) as bridge to heart transplantation.
Resumo:
Heart transplantation (HTx) is the treatment of choice for end-stage heart failure but the limited availability of heart's donors still represents a major issue. So long-term mechanical circulatory support (MCS) has been proposed as an alternative treatment option to assist patients scheduled on HTx waiting list bridging them for a variable time period to cardiac transplantation-the so-called bridge-to-transplantation (BTT) strategy. Nowadays approximately 90% of patients being considered for MCS receive a left ventricular assist device (LVAD). In fact, LVAD experienced several improvements in the last decade and the predominance of continuous-flow over pulsatile-flow technology has been evident since 2008. The aim of the present report is to give an overview of continuous-flow LVAD utilization in the specific setting of the BTT strategy taking into consideration the most representative articles of the scientific literature and focusing the attention on the evolution, clinical outcomes, relevant implications on the HTx strategy and future perspectives of the continuous-flow LVAD technology.
Resumo:
BACKGROUND: The mechanism behind early graft failure after right ventricular outflow tract (RVOT) reconstruction is not fully understood. Our aim was to establish a three-dimensional computational fluid dynamics (CFD) model of RVOT to investigate the hemodynamic conditions that may trigger the development of intimal hyperplasia and arteriosclerosis. METHODS: Pressure, flow, and diameter at the RVOT, pulmonary artery (PA), bifurcation of the PA, and left and right PAs were measured in 10 normal pigs with a mean weight of 24.8 ± 0.78 kg. Data obtained from the experimental scenario were used for CFD simulation of pressure, flow, and shear stress profile from the RVOT to the left and right PAs. RESULTS: Using experimental data, a CFD model was obtained for 2.0 and 2.5-L/min pulsatile inflow profiles. In both velocity profiles, time and space averaged in the low-shear stress profile range from 0-6.0 Pa at the pulmonary trunk, its bifurcation, and at the openings of both PAs. These low-shear stress areas were accompanied to high-pressure regions 14.0-20.0 mm Hg (1866.2-2666 Pa). Flow analysis revealed a turbulent flow at the PA bifurcation and ostia of both PAs. CONCLUSIONS: Identified local low-shear stress, high pressure, and turbulent flow correspond to a well-defined trigger pattern for the development of intimal hyperplasia and arteriosclerosis. As such, this real-time three-dimensional CFD model may in the future serve as a tool for the planning of RVOT reconstruction, its analysis, and prediction of outcome.
Resumo:
Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.
Resumo:
The natural flow hydrological characteristics (such as the magnitude, frequency, duration, timing, and rate of change of discharge) of Alpine streams, dominated by snowmelt and glacier melt, have been established for many years. More recently, the ecosystems that they sustain have been described and explained. However, natural Alpine flow regimes may be strongly modified by hydroelectric power production, which impacts upon both river discharge and sediment transfer, and hence on downstream flora and fauna. The impacts of barrages or dams have been well studied. However, there is a second type of flow regulation, associated with flow abstraction at intakes where the water is transferred laterally, either to another valley for storage, or at altitude within the same valley for eventual release downstream. Like barrages, such intakes also trap sediment, but because they are much smaller, they fill more frequently and so need to be flushed regularly. Downstream, while the flow regime is substantially modified, the delivery of sediment (notably coarser fractions) remains. The ecosystem impacts of such systems have been rarely considered. Through reviewing the state of our knowledge of Alpine ecosystems, we outline the key research questions that will need to be addressed in order to modify intake management so as to reduce downstream ecological impacts. Simply redesigning river flows to address sediment management will be ineffective because such redesign cannot restore a natural sediment regime and other approaches are likely to be required if stream ecology in such systems is to be improved.
Resumo:
An ever increasing number of films, books, and scholarly works dealing with the undead have appeared in the last decade, making the zombie the very incarnation of American popular culture on a global scale. In this chapter I show that the zombie is also a surprisingly complex sign for transnational movement and multidirectional cultural flow. While the zombie may appear as the very epitome of American cultural production and influence, a mindless movie monster born of a vapid stream of Hollywood B-horror, the zombie has a rich transnational history and an eloquent figurative resonance that have fed into its current ubiquity as cultural sign. This chapter reviews that history and then examines some of the ways that the zombie figure has traveled between the Caribbean, where it emerged, the United States, where it was translated into a film device of startling pathos and horror, and Europe, to which it owes some of its most interesting recent innovations.
Resumo:
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.