195 resultados para Statistical Genetics
Resumo:
Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches.
Resumo:
The second scientific meeting of the European systems genetics network for the study of complex genetic human disease using genetic reference populations (SYSGENET) took place at the Center for Cooperative Research in Biosciences in Bilbao, Spain, December 10-12, 2012. SYSGENET is funded by the European Cooperation in the Field of Scientific and Technological Research (COST) and represents a network of scientists in Europe that use mouse genetic reference populations (GRPs) to identify complex genetic factors influencing disease phenotypes (Schughart, Mamm Genome 21:331-336, 2010). About 50 researchers working in the field of systems genetics attended the meeting, which consisted of 27 oral presentations, a poster session, and a management committee meeting. Participants exchanged results, set up future collaborations, and shared phenotyping and data analysis methodologies. This meeting was particularly instrumental for conveying the current status of the US, Israeli, and Australian Collaborative Cross (CC) mouse GRP. The CC is an open source project initiated nearly a decade ago by members of the Complex Trait Consortium to aid the mapping of multigenetic traits (Threadgill, Mamm Genome 13:175-178, 2002). In addition, representatives of the International Mouse Phenotyping Consortium were invited to exchange ongoing activities between the knockout and complex genetics communities and to discuss and explore potential fields for future interactions.
Resumo:
BACKGROUND: Blood pressure (BP) is known to aggregate in families. Yet, heritability estimates are population-specific and no Swiss data have been published so far. We estimated the heritability of ambulatory and office BP in a Swiss population-based sample. METHODS: The Swiss Kidney Project on Genes in Hypertension is a population-based family study focusing on BP genetics. Office and ambulatory BP were measured in 1009 individuals from 271 nuclear families. Heritability was estimated for SBP, DBP, and pulse pressure using a maximum likelihood method implanted in the Statistical Analysis in Genetic Epidemiology software. RESULTS: The 518 women and 491 men included in this analysis had a mean (±SD) age of 48.3 (±17.4) and 47.3 (±17.7) years, and a mean BMI of 23.8 (±4.2) and 25.9 (±4.1) kg/m, respectively. Narrow-sense heritability estimates (±standard error) for ambulatory SBP, DBP, and pulse pressure were 0.37 ± 0.07, 0.26 ± 0.07, and 0.29 ± 0.07 for 24-h BP; 0.39 ± 0.07, 0.28 ± 0.07, and 0.27 ± 0.07 for day BP; and 0.25 ± 0.07, 0.20 ± 0.07, and 0.30 ± 0.07 for night BP, respectively (all P < 0.001). Heritability estimates for office SBP, DBP, and pulse pressure were 0.21 ± 0.08, 0.25 ± 0.08, and 0.18 ± 0.07 (all P < 0.01). CONCLUSIONS: We found significant heritability estimates for both ambulatory and office BP in this Swiss population-based study. Our findings justify the ongoing search for the genetic determinants of BP.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
Resumo:
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes.
Resumo:
BACKGROUND: High interindividual variability in plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, may lead to suboptimal drug concentration. OBJECTIVE: Using a population pharmacokinetic approach, we aimed to characterize the genetic and non-genetic sources of variability affecting risperidone and 9-hydroxyrisperidone pharmacokinetics, and relate them to common side effects. METHODS: Overall, 150 psychiatric patients (178 observations) treated with risperidone were genotyped for common polymorphisms in NR1/2, POR, PPARα, ABCB1, CYP2D6 and CYP3A genes. Plasma risperidone and 9-hydroxyrisperidone were measured, and clinical data and common clinical chemistry parameters were collected. Drug and metabolite concentrations were analyzed using non-linear mixed effect modeling (NONMEM(®)). Correlations between trough concentrations of the active moiety (risperidone plus 9-hydroxyrisperidone) and common side effects were assessed using logistic regression and linear mixed modeling. RESULTS: The cytochrome P450 (CYP) 2D6 phenotype explained 52 % of interindividual variability in risperidone pharmacokinetics. The area under the concentration-time curve (AUC) of the active moiety was found to be 28 % higher in CYP2D6 poor metabolizers compared with intermediate, extensive and ultrarapid metabolizers. No other genetic markers were found to significantly affect risperidone concentrations. 9-hydroxyrisperidone elimination was decreased by 26 % with doubling of age. A correlation between trough predicted concentration of the active moiety and neurologic symptoms was found (p = 0.03), suggesting that a concentration >40 ng/mL should be targeted only in cases of insufficient, or absence of, response. CONCLUSIONS: Genetic polymorphisms of CYP2D6 play an important role in risperidone, 9-hydroxyrisperidone and active moiety plasma concentration variability, which were associated with common side effects. These results highlight the importance of a personalized dosage adjustment during risperidone treatment.
Resumo:
Understanding the factors that shape adaptive genetic variation across species niches has become of paramount importance in evolutionary ecology, especially to understand how adaptation to changing climate affects the geographic range of species. The distribution of adaptive alleles in the ecological niche is determined by the emergence of novel mutations, their fitness consequences and gene flow that connects populations across species niches. Striking demographical differences and source sink dynamics of populations between the centre and the margin of the niche can play a major role in the emergence and spread of adaptive alleles. Although some theoretical predictions have long been proposed, the origin and distribution of adaptive alleles within species niches remain untested. In this paper, we propose and discuss a novel empirical approach that combines landscape genetics with species niche modelling, to test whether alleles that confer local adaptation are more likely to occur in either marginal or central populations of species niches. We illustrate this new approach by using a published data set of 21 alpine plant species genotyped with a total of 2483 amplified fragment length polymorphisms (AFLP), distributed over more than 1733 sampling sites across the Alps. Based on the assumption that alleles that were statistically associated with environmental variables were adaptive, we found that adaptive alleles in the margin of a species niche were also present in the niche centre, which suggests that adaptation originates in the niche centre. These findings corroborate models of species range evolution, in which the centre of the niche contributes to the emergence of novel adaptive alleles, which diffuse towards niche margins and facilitate niche and range expansion through subsequent local adaptation. Although these results need to be confirmed via fitness measurements in natural populations and functionally characterised genetic sequences, this study provides a first step towards understanding how adaptive genetic variation emerges and shapes species niches and geographic ranges along environmental gradients.
Resumo:
Many people regard the concept of hypothesis testing as fundamental to inferential statistics. Various schools of thought, in particular frequentist and Bayesian, have promoted radically different solutions for taking a decision about the plausibility of competing hypotheses. Comprehensive philosophical comparisons about their advantages and drawbacks are widely available and continue to span over large debates in the literature. More recently, controversial discussion was initiated by an editorial decision of a scientific journal [1] to refuse any paper submitted for publication containing null hypothesis testing procedures. Since the large majority of papers published in forensic journals propose the evaluation of statistical evidence based on the so called p-values, it is of interest to expose the discussion of this journal's decision within the forensic science community. This paper aims to provide forensic science researchers with a primer on the main concepts and their implications for making informed methodological choices.
Resumo:
This article proposes a checklist to improve statistical reporting in the manuscripts submitted to Public Understanding of Science. Generally, these guidelines will allow the reviewers (and readers) to judge whether the evidence provided in the manuscript is relevant. The article ends with other suggestions for a better statistical quality of the journal.
Resumo:
Background. Hepatitis B virus (HBV) is an important cause of chronic viral disease worldwide and can be life threatening. While a safe and effective vaccine is widely available, 5 to 10% of healthy vaccinees fail to achieve a protective anti-hepatitis B surface antigen antibody (anti-HBs) titer (>10mIU/ml). A limited number of studies investigated host genetics of the response to HBV vaccine. To our knowledge, no comprehensive overview of genetic polymorphisms both within and outside the HLA system has been done so far. Aim. The aim of this study was to perform a systematic review of the literature of human genetics influencing immune response after hepatitis B vaccination. Methods. Literature searches using keywords were conducted in the electronic databases Medline, Embase and ISI Web of Science the cut-off date being March 2014. After selection of papers according to stringent inclusion criteria, relevant information was systematically collected from the remaining articles, including demographic data, number of patients, schedule and type of vaccine, phenotypes, genes and single nucleotide polymorphisms (SNPs) genotyping results and their association with immune response to hepatitis B vaccine. Results. The literature search produced a total of 1968 articles from which 46 studies were kept for further analyses. From these studies, data was extracted for 19 alleles from the human leukocyte antigen (HLA) region that were reported as significant at least twice. Among those alleles, 9 were firmly associated with vaccine response outcome (DQ2 [DQB1*02 and DQB1*0201], DR3 [DRB1*03 and DRB1*0301], DR7 [DRB1*07 and DRB1*0701], C4AQ0, DPB1*0401, DQ3, DQB1*06, DRB1*01 and DRB1*13 [DRB1*1301]). In addition, data was extracted for 55 different genes from which 13 extra-HLA genes had polymorphisms that were studied by different group of investigators or by the same group with a replication study. Among the 13 genes allowing comparison, 4 genes (IL-1B, IL-2, IL-4R and IL- 6) revealed no significant data, 6 genes (IL-4, IL-10, IL-12B, IL-13, TNFA, IFNG and TLR2) were explored with inconsistent results and 2 genes (CD3Z and ITGAL) yielded promising results as their association with vaccine response was confirmed by a replication approach. Furthermore, this review produced a list of 46 SNPs from 26 genes that were associated with immune response to vaccine only once, providing novel candidates to be tested in datasets from existing genome-wide association studies (GWAS). Conclusion. To the best of our knowledge, this is the first systematic review of immunogenetic studies of response to hepatitis B vaccine. While this work reassesses the role of several HLA alleles on vaccine response outcome, the associations with polymorphisms in genes outside the HLA region were rather inconsistent. Moreover, this work produced a list of 46 significant SNPs that were reported by a single group of investigators, opening up some interesting possibilities for further research.