191 resultados para Reduced Neutral Red


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many species with internal fertilization, molecules transferred in the male ejaculate trigger and interact with physiological changes in females. It is controversial to what extent these interactions between the sexes act synergistically to mediate the female switch to a reproductive state or instead reflect sexual antagonism evolved as a by product of sexual selection on males. To address this question, we eliminated sexual selection by enforcing monogamy in populations of Drosophila melanogaster for 65 generations and then measured the expression of male seminal fluid protein genes and genes involved in the female response to mating. In the absence of sperm competition, male and female reproductive interests are perfectly aligned and any antagonism should be reduced by natural selection. Consistent with this idea, males from monogamous populations showed reduced expression of seminal fluid protein genes, 16% less on average than in polygamous males. Further, we identified 428 genes that responded to mating in females. After mating, females with an evolutionary history of monogamy exhibited lower relative expression of genes that were up regulated in response to mating and higher expression of genes that were down-regulated - in other words, their post-mating transcriptome appeared more virgin-like. Surprisingly, these genes showed a similar pattern even before mating, suggesting that monogamous females evolved to be less poised for mating and the accompanying receipt of male seminal fluid proteins. This reduced investment by both monogamous males and females in molecules involved in post-copulatory interactions points to a pervasive role of sexual conflict in shaping these interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit-at least in some subjects (i.e., responders)-a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI's during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality-at least in this subgroup of subjects-by possibly exhibiting a muscle activation pattern similar to VOL contractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Angiotensin receptor blockers (ARBs) have been suggested to reduce inflammation in randomized controlled trials. We assessed the association between ARBs and inflammatory markers in a general population setting. METHODS: This is a population-based prospective study conducted in Lausanne, Switzerland. Baseline data from 933 participants on antihypertensive drugs (424 on ARBs) was collected in 2003-2006. Follow-up data from 1120 participants (572 on ARBs) was collected in 2009-2012. C-reactive protein (CRP), interleukins 1β and 6 and tumor necrosis factor alpha (TNF-α) were assessed and categorized in quartiles. RESULTS: At baseline, no differences were found between participants taking or not taking ARBs for all inflammatory markers studied, and this association persisted after multivariate adjustment: odds ratios (ORs) and (95% confidence interval) for being in the highest quartile of interleukin-1β, interleukin-6, TNF-α and CRP for participants on ARB compared to participants not on ARB were 1.23 (0.89-1.70), 1.26 (0.93-1.70), 1.14 (0.85-1.53) and 1.27 (0.96-1.69) respectively (P > 0.05). These findings were further replicated in the follow-up study: OR and (95% CI) of 1.10 (0.78-1.55), 0.87 (0.64-1.19), 0.83 (0.61-1.14) and 0.91 (0.68-1.22) for interleukin-1β, interleukin-6, TNF-α and CRP respectively (P > 0.05). Finally, no effect of ARBs was found when comparing participants who received ARBs throughout the 5.4-year follow-up with participants on other antihypertensive drugs: OR and (95% CI) of 0.93 (0.61-1.42), 0.80 (0.54-1.17), 0.86 (0.59-1.25) and 0.95 (0.67-1.35) for interleukin-1β, interleukin-6, TNF-α and CRP respectively (P > 0.05). CONCLUSION: ARBs are not associated with reduced levels of inflammatory markers in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three issues are discussed: i) While number of psychiatric beds has been reduced in most countries and although treatments proposed in psychiatric hospitals have evolved, they continue to be viewed as asylums implementing constraints. Considering this prevents their adequate use and leads to patients' stigmatisation, promotion of a better knowledge of contemporary hospital treatments is needed. 2) In addition, most psychiatric disorders emerging during adolescence and early adulthood, it is important to develop accessible care on university campuses. 3) While risk of weight gain and metabolic syndrome under neuroleptics or mood stabilisers is known, there is a need for the development of <red flags> that are easy to identify. A 5% increase in weight during the first month of treatment indicates the risk for important later weight gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NLRC5, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs), which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with inflammatory stimuli, not only did NLRC5 level increase, but also its importance in directing MHCI transcription. Despite markedly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nlrc5(-/-) DCs. Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs with H2-K transcription defects independent of Nlrc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with the decreased amount of neosynthesized MHCI, Nlrc5(-/-) DCs exhibited a defective capacity to display endogenous Ags. However, neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5(-/-) DCs. Altogether, these data show that Nlrc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFSFR14) and the lymphotoxin β receptor (LTβR, TNFSFR3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.