552 resultados para PAF RECEPTOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glitazones are used in the treatment of type 2 diabetes as efficient insulin sensitizers. They can, however, induce peripheral edema through an unknown mechanism in up to 18% of cases. In this double-blind, randomized, placebo-controlled, four-way, cross-over study, we examined the effects of a 6-wk administration of pioglitazone (45 mg daily) or placebo on the blood pressure, hormonal, and renal hemodynamic and tubular responses to a low (LS) and a high (HS) sodium diet in healthy volunteers. Pioglitazone had no effect on the systemic and renal hemodynamic responses to salt, except for an increase in daytime heart rate. Urinary sodium excretion and lithium clearance were lower with pioglitazone, particularly with the LS diet (P < 0.05), suggesting increased sodium reabsorption at the proximal tubule. Pioglitazone significantly increased plasma renin activity with the LS (P = 0.02) and HS (P = 0.03) diets. Similar trends were observed with aldosterone. Atrial natriuretic levels did not change with pioglitazone. Body weight increased with pioglitazone in most subjects. Pioglitazone stimulates plasma renin activity and favors sodium retention and weight gain in healthy volunteers. These effects could contribute to the development of edema in some subjects treated with glitazones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intimal sarcoma (IS) is a rare, malignant, and aggressive tumor that shows a relentless course with a concomitant low survival rate and for which no effective treatment is available. In this study, 21 cases of large arterial blood vessel IS were analyzed by immunohistochemistry and fluorescence in situ hybridization and selectively by karyotyping, array comparative genomic hybridization, sequencing, phospho-kinase antibody arrays, and Western immunoblotting in search for novel diagnostic markers and potential molecular therapeutic targets. Ex vivo immunoassays were applied to test the sensitivity of IS primary tumor cells to the receptor tyrosine kinase (RTK) inhibitors imatinib and dasatinib. We showed that amplification of platelet-derived growth factor receptor α (PDGFRA) is a common finding in IS, which should be considered as a molecular hallmark of this entity. This amplification is consistently associated with PDGFRA activation. Furthermore, the tumors reveal persistent activation of the epidermal growth factor receptor (EGFR), concurrent to PDGFRA activation. Activated PDGFRA and EGFR frequently coexist with amplification and overexpression of the MDM2 oncogene. Ex vivo immunoassays on primary IS cells from one case showed the potency of dasatinib to inhibit PDGFRA and downstream signaling pathways. Our findings provide a rationale for investigating therapies that target PDGFRA, EGFR, or MDM2 in IS. Given the clonal heterogeneity of this tumor type and the potential cross-talk between the PDGFRA and EGFR signaling pathways, targeting multiple RTKs and aberrant downstream effectors might be required to improve the therapeutic outcome for patients with this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up-regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion-induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT-PCR. Our results clearly identified lesion-induced as well as tissue type-specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane-associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type-specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR-deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR-deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild-type mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fasting is associated with significant changes in nutrient metabolism, many of which are governed by transcription factors that regulate the expression of rate-limiting enzymes. One factor that plays an important role in the metabolic response to fasting is the peroxisome proliferator-activated receptor alpha (PPARalpha). To gain more insight into the role of PPARalpha during fasting, and into the regulation of metabolism during fasting in general, a search for unknown PPARalpha target genes was performed. Using subtractive hybridization (SABRE) comparing liver mRNA from wild-type and PPARalpha null mice, we isolated a novel PPARalpha target gene, encoding the secreted protein FIAF (for fasting induced adipose factor), that belongs to the family of fibrinogen/angiopoietin-like proteins. FIAF is predominantly expressed in adipose tissue and is strongly up-regulated by fasting in white adipose tissue and liver. Moreover, FIAF mRNA is decreased in white adipose tissue of PPARgamma +/- mice. FIAF protein can be detected in various tissues and in blood plasma, suggesting that FIAF has an endocrine function. Its plasma abundance is increased by fasting and decreased by chronic high fat feeding. The data suggest that FIAF represents a novel endocrine signal involved in the regulation of metabolism, especially under fasting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR(-/-)) and LDLR/Sirt3 double-knockout (Sirt3(-/-)LDLR(-/-)) mice were fed a high-cholesterol diet (1.25 % w/w) for 12 weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR(-/-) mice. Sirt3 deficiency does not affect atherosclerosis in LDLR(-/-) mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoxins (LXs), are endogenously produced eicosanoids, which possess potent antiinflammatory and proresolution bioactivities. The role of LXs in the endometrium is unknown. Our initial observations showed LXA4 enhanced estrogen receptor (ER)-mediated transcriptional activation in Ishikawa endometrial epithelial cells. Furthermore, we demonstrated that LXA4 possesses robust estrogenic activity through its capacity to alter cellular proliferation as well as the expression of estrogen-regulated genes implicated in cancer development. Interestingly, LXA4 also demonstrated antiestrogenic potential in that it attenuated E2-mediated cellular proliferation, consistent with the effects of a partial ER agonist. Subsequent studies revealed that these actions of LXA4 were directly mediated by ERa and appear to closely mimic those of the potent estrogen, 17b-Estradiol (E2). Using competitive radioligand binding assays, we confirmed that this lipid binds ER. We additionally demonstrated this estrogenic activity of LXA4 in mouse uterus in vivo using a uterotrophic assay and the expression of E2- dependent genes as readouts. Taken together our results establish a dual capacity of LXA4 to modulate estrogenic activity in the endometrium. These findings highlight a previously unappreciated paradigm in LXA4-mediated activities and reveal novel immunoendocrine crosstalk mechanisms. Disclosure of interest: None declared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) is a retrovirus encoding a superantigen that is recognized in association with major histocompatibility complex class II by the variable region of the beta chain (V(beta)) of the T-cell receptor. The C-terminal 30 to 40 amino acids of the superantigen of different MMTVs display high sequence variability that correlates with the recognition of particular T-cell receptor V(beta) chains. Interestingly, MMTV(SIM) and mtv-8 superantigens are highly homologous but have nonoverlapping T-cell receptor V(beta) specificities. To determine the importance of these few differences for specific V(beta) interaction, we studied superantigen responses in mice to chimeric and mutant MMTV(SIM) and mtv-8 superantigens expressed by recombinant vaccinia viruses. We show that only a few changes (two to six residues) within the C terminus are necessary to modify superantigen recognition by specific V(beta)s. Thus, the introduction of the MMTV(SIM) residues 314-315 into the mtv-8 superantigen greatly decreased its V(beta)12 reactivity without gain of MMTV(SIM)-specific function. The introduction of MMTV(SIM)-specific residues 289 to 295, however, induced a recognition pattern that was a mixture of MMTV(SIM)- and mtv-8-specific V(beta) reactivities: both weak MMTV(SIM)-specific V(beta)4 and full mtv-8-specific V(beta)11 recognition were observed while V(beta)12 interaction was lost. The combination of the two MMTV(SIM)-specific regions in the mtv-8 superantigen established normal MMTV(SIM)-specific V(beta)4 reactivity and completely abolished mtv-8-specific V(beta)5, -11, and -12 interactions. These new functional superantigens with mixed V(beta) recognition patterns allowed us to precisely delineate sites relevant for molecular interactions between the SIM or mtv-8 superantigen and the T-cell receptor V(beta) domain within the 30 C-terminal residues of the viral superantigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. METHODOLOGY/FINDINGS: We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. CONCLUSION/SIGNIFICANCE: Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating humoral responses against erythrocytic invasion and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metformin demonstrates anorectic effects in vivo and inhibits neuropeptide Y expression in cultured hypothalamic neurons. Here we investigated the mechanisms implicated in the modulation of feeding by metformin in animals rendered obese by long-term high-fat diet (diet-induced obesity [DIO]) and in animals resistant to obesity (diet resistant [DR]). Male Long-Evans rats were kept on normal chow feeding (controls) or on high-fat diet (DIO, DR) for 6 months. Afterward, rats were treated 14 days with metformin (75 mg/kg) or isotonic sodium chloride solution and killed. Energy efficiency, metabolic parameters, and gene expression were analyzed at the end of the high-fat diet period and after 14 days of metformin treatment. At the end of the high-fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic neuropeptide Y expression than DR or control rats, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pretreatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. These data identify the hypothalamic ObRb as a gene modulated after metformin treatment and suggest that the anorectic effects of the drug are potentially mediated via an increase in the central sensitivity to leptin. Thus, they provide a rationale for novel therapeutic approaches associating leptin and metformin in the treatment of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : Breast cancer incidence rates have increased over the past hundred years, in particular, in Western industrial countries and they continue to rise worldwide. Breast cancer risk has been linked to life exposure to endogenous and exogenous estrogens, and there is increasing concern that exposure to endocrine disruptors which are increasingly accumulating in our environment may also have a role. Using the mouse as model, I have analyzed the physiological role of estrogen signaling in mammary gland development. I have shown that estrogen signaling through the estrogen receptor alpha (ERα) in the mammary epithelium is required for ductal morphogenesis during puberty. Moreover, I have demonstrated that estrogens induce proliferation of mammary epithelial cells through a paracrine mechanism. The presence of estrogen signaling is essential cell intrinsically via ERα or ERβ for the terminal differentiation into milk secreting cells during pregnancy. Furthermore, I have examined how perinatal exposure to the estrogenic plasticizer bisphenol A (BPA) found ubiquitously in consumer goods such as baby bottles formula and beverage containers affects the normal mammary gland development and possibly predispose the mammary gland to tumorigenesis. I have found that C57b16 mice that were exposed, via their drinking water, to several BPA doses ranging from 0.025µg/kg/day to 250µg/kg/day exhibits delayed terminal end bud formation and consequently the ductal outgrowth. Later in life, the mice that were exposed in utero to BPA displayed an increased number of mammary epithelial cells. Acute exposure of 3-week-old mice to BPA can alter gene expression levels of an important estrogen target gene, amphiregulin. Taken together these data are compatible with a scenario in which perinatal BPA exposure may alter mammary gland development by affecting developmental signaling pathways. Résumé : Les taux d'incidence des cancers du sein ont augmenté au cours des cent dernières années en particulier dans les pays industriels occidentaux et ils continuent d'augmenter dans le monde entier. Le risque du cancer du sein a été corrélé à l'exposition au cours de la vie aux oestrogènes endogènes et exogènes. Il y a une préoccupation croissante concernant l'exposition aux perturbateurs endocriniens qui ne cessent de s'accumulent dans notre environnement et qui peuvent également avoir un rôle dans l'augmentation des cancers du sein. En utilisant le modèle de souris, j'ai analysé le rôle physiologique de la voie de signalisation à l'oestrogène dans le développement mammaire. J'ai prouvé que l'oestrogène par l'intermédiaire de son récepteur alpha (ERα) est indispensable dans l'épithélium pour la morphogénèse du système canalaire pendant la puberté. De plus, j'ai démontré que les oestrogènes induisent la prolifération des cellules épithéliales mammaires par un mécanisme paracrine. La présence de la voie de signalisation à l'oestrogène est essentielle de manière intrinsèque à la cellule par l'intermédiaire d'ERα ou ERβ pour la différentiation terminale des cellules épithéliales en cellules sécrétrices de lait pendant la grossesse. En outre, j'ai examiné comment l'exposition périnatale au bisphénol A (BPA), un plastifiant présentant des propriétés ostrogéniques et omniprésent dans divers produits d'usage courant tels que les biberons des bébés et les récipients en plastique, affecte le développement de la glande mammaire et prédispose probablement celle-ci à la tumorigénèse. J'ai constaté que l'exposition périnatale à BPA retarde la formation des bourgeons terminaux et par conséquent la croissance du système canalaire. Plus tard dans la vie, les souris qui ont été exposées dans l'utérus au BPA ont montré un plus grand nombre de cellules épithéliales mammaires. L'exposition aiguë de souris âgées de 3 semaines au BPA perturbe le niveau d'expression d'un gène cible important de l'oestrogène, l'amphiregulin. Ces données sont compatibles avec un scénario dans lequel l'exposition périnatale au BPA peut changer le développement de la glande mammaire en affectant des voies de signalisation développementales.