249 resultados para Orsini, Fulvio, 1529-1600
Resumo:
During chronic infection, pathogen-specific CD8(+) T cells upregulate expression of molecules such as the inhibitory surface receptor PD-1, have diminished cytokine production and are thought to undergo terminal differentiation into exhausted cells. Here we found that T cells with memory-like properties were generated during chronic infection. After transfer into naive mice, these cells robustly proliferated and controlled a viral infection. The reexpanded T cell populations continued to have the exhausted phenotype they acquired during the chronic infection. Thus, the cells underwent a form of differentiation that was stably transmitted to daughter cells. We therefore propose that during persistent infection, effector T cells stably differentiate into a state that is optimized to limit viral replication without causing overwhelming immunological pathology.
Resumo:
Major histocompatibility complex (MHC) class II-restricted antigen presentation is essential for the function of dendritic cells (DCs). We show here that plasmacytoid DCs (pDCs) differ from all other DC subsets with respect to expression of CIITA, the 'master regulator' of MHC class II genes. The gene encoding CIITA is controlled by three cell type-specific promoters: pI, pIII and pIV. With gene targeting in mice, we demonstrate that pDCs rely strictly on the B cell promoter pIII, whereas macrophages and all other DCs depend on pI. The molecular mechanisms driving MHC class II expression in pDCs are thus akin to those operating in lymphoid rather than myeloid cells.
Resumo:
Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.
Resumo:
Infectious diseases (ID) are a major cause of morbidity and mortality after SOT. Since May 2008, the STCS has registered 95% of all SOT recipients in Switzerland. The extensive data set includes pre- and post-transplant variables that are prospectively collected at transplantation, 6 months post-transplant, and yearly thereafter. All ID events are recorded using internationally validated defi nitions. We obtained data from 1101 patients (79 heart, 685 kidney, 29 kidney-pancreas, 212 liver, and 96 lung transplants). So far the median observation times were 0.8 (IQR 0.3-1.4; heart); 1.1 (0.6-1.8, kidney); 1.1 (0.6-1.9, kidney-pancreas); 1.0 (0.5-1.7, liver); and 0.9 years (0.5-1.5, lung). The highest rates of proven or probable ID events were seen in lung (76%), followed by liver (64%), heart (62%), kidney-pancreas (62%), kidney (58%). During the observation period, ID was the cause of death in 19 patients (1.7%). Rates of infections per person-years according to pathogen and type of transplantation are shown in Figure 1. The data indicate that virus infections are only second after bacteria whereas fungi occur at relatively low rates. This prospective and standardized long-term collection of all ID events will allow a comprehensive assessment of the burden of ID across all SOT types in Switzerland. Regular analysis will identify new trends, serve as a quality control and help design anti-infectious interventions aiming at increasing safety and improving overall transplantation outcome.
Resumo:
Atrial natriuretic peptide is cleared from plasma by clearance receptors and by enzymatic degradation by way of a neutral metalloendopeptidase. Inhibition of neutral metalloendopeptidase activity appears to provide an interesting approach to interfere with metabolism of atrial natriuretic peptide to enhance the renal and haemodynamic effects of endogenous atrial natriuretic peptide. In this study, the effects of SCH 34826, a new orally active neutral metalloendopeptidase inhibitor, have been evaluated in a single-blind, placebo-controlled study involving eight healthy volunteers who had maintained a high sodium intake for 5 days. SCH 34826 had no effect on blood pressure or heart rate in these normotensive subjects. SCH 34826 promoted significant increases in excretion of urinary sodium, phosphate, and calcium. The cumulative 5-hour urinary sodium excretion was 15.7 +/- 7.3 mmol for the placebo and 22.9 +/- 5, 26.7 +/- 6 (p less than 0.05), and 30.9 +/- 6.8 mmol (p less than 0.01) for the 400, 800, and 1600 mg SCH 34826 doses, respectively. During the same time interval, the cumulative urinary phosphate excretion increased by 0.3 +/- 0.4 mmol after placebo and by 1.5 +/- 0.3 (p less than 0.01), 1.95 +/- 0.3 (p less than 0.01), and 2.4 +/- 0.4 mmol (p less than 0.001) after 400, 800, and 1600 mg SCH 34826, respectively. There was no change in diuresis or excretion of urinary potassium and uric acid. The natriuretic response to SCH 34826 occurred in the absence of any change in plasma atrial natriuretic peptide levels but was associated with a dose-dependent elevation of urinary atrial natriuretic peptide and cyclic guanosine monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen-presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide-specific responses. In this study, we explored the contributions of naïve and memory CD4(+) T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4(+) T cells, both naturally occurring and induced by sensitization with multiple third-party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4(+)CD25(+) T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.
Resumo:
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Resumo:
Many studies have investigated the impacts that climate change could potentially have on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have been using the simplification of considering dispersal as either unlimited or null. However, depending on a species' dispersal capacity, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of a species' future distribution. To quantify the discrepancies between unlimited, realistic, and no dispersal scenarios, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the Western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal and realistic dispersal with long-distance dispersal events) and under four climate change scenarios. Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, using the unlimited dispersal simplification nevertheless provided good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analyzing the temporal pattern of species extinctions over the entire 21st century showed that, due to the possibility of a large number of species shifting their distribution to higher elevation, important species extinctions for our study area might not occur before the 2080-2100 time periods.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
This study aimed to assess the effects of an extreme mountain ultramarathon (MUM, 330 km, 24,000 D+) on lung function. Twenty-nine experienced male ultramarathon runners performed longitudinally [before (pre), during (mid), and immediately after (post) a MUM] a battery of pulmonary function tests. The tests included measurements of forced vital capacity, forced expiratory volume in 1 s, peak flow, inspiratory capacity, and maximum voluntary ventilation in 12 s (MVV12). A significant reduction in the running speed was observed (-43.0% between pre-mid and mid-post; P < 0.001). Expiratory function declined significantly at mid (P < 0.05) and at post (P < 0.05). A similar trend was observed for inspiratory function (P < 0.05). MVV12 declined at mid (P < 0.05) and further decreased at post (P < 0.05). Furthermore, there are significant negative correlations between performance time and MVV12 pre-race (R = -0.54, P = 0.02) as well as changes in MVV12 between pre- and post-race (R = -0.53, P = 0.009). It is concluded that during an extreme MUM, a continuous decline in pulmonary function was observed, likely attributable to the high levels of ventilation required during this MUM in a harsh mountainous environment.
Resumo:
Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.
Resumo:
Background: Optimal valganciclovir (VGC) dosage and duration for cytomegalovirus (CMV) prophylaxis in kidney transplant recipients remains controversial. This study aimed to determine GCV blood levels and efficacy/safety observed under low-dose oral VGC in kidney transplant recipients. Secondly, to quantify the variability of GCV blood levels, and its potential clinical impact. Methods: In this prospective study, each patient at risk for CMV undergoing kidney transplantation received low-dose VGC (450 mg qd) prophylaxis for 3 months, unless GFR was below 40 mL/min, in which case the dose was adapted to 450 mg every other day. GCV levels, at trough (Ctrough) and at peak (C3h) were measured monthly and CMV viremia was assessed during and after prophylaxis using real time quantitative Polymerase Chain Reaction. Adverse effects were recorded on each GCV sampling. Patients were followed up to one year after transplantation. Results: 38 kidney recipients (19 D+/R+, 11 D+/R-, 8 D-/R+) received 3-month VGC prophylaxis. Most patients (mean GFR of 59 mL/min) received 450 mg qd but the dose was reduced to 450 mg every other day in 6 patients with mean GFR of 22 mL/min. Average GCV C3h and Ctrough (regressed at 24h or 48h) were 3.9 mg/L (CV 33%, range: 1.3-8.2) and 0.4 mg/L (CV 111%, range 0.1-3.3). Population pharmacokinetic analysis showed a fair dispersion of the parameters mainly influenced by renal function. Despite this variability, patients remained aviremic during VGC prophylaxis. Neutropenia and thrombocytopenia (grade 2-4) were reported in 4% and 3% of patients respectively. During follow-up, asymptomatic CMV viremia was reported in 25% patients. One year after transplantation, 12% patients (all D+/R-) had developed a CMV disease, which was treated with a therapeutic 6-week course of oral VGC. Conclusion: Average GCV blood levels after oral administration of low-dose VGC in kidney transplant recipients were comparable to those previously reported with oral GCV prophylaxis, efficacious and well tolerated. Thus, a 3-month course of low-dose VGC is appropriate for the renal function of most kidney transplant recipients.
Resumo:
Gastric cancer affects about one million people per year worldwide, being the second leading cause of cancer mortality. The study of its etiology remains therefore a global issue as it may allow the identification of major targets, besides eradication of Helicobacter pylori infection, for primary prevention. It has however received little attention, given its comparatively low incidence in most high-income countries. We introduce a consortium of epidemiological investigations named the 'Stomach cancer Pooling (StoP) Project'. Twenty-two studies agreed to participate, for a total of over 9000 cases and 23 000 controls. Twenty studies have already shared the original data set. Of the patients, 40% are from Asia, 43% from Europe, and 17% from North America; 34% are women and 66% men; the median age is 61 years; 56% are from population-based case-control studies, 41% from hospital-based ones, and 3% from nested case-control studies derived from cohort investigations. Biological samples are available from 12 studies. The aim of the StoP Project is to analyze the role of lifestyle and genetic determinants in the etiology of gastric cancer through pooled analyses of individual-level data. The uniquely large data set will allow us to define and quantify the main effects of each risk factor of interest, including a number of infrequent habits, and to adequately address associations in subgroups of the population, as well as interaction within and between environmental and genetic factors. Further, we will carry out separate analyses according to different histotypes and subsites of gastric cancer, to identify potential different risk patterns and etiological characteristics.