205 resultados para Multidrug-resistant organisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to molecular epidemiology theory, two isolates belong to the same chain of transmission if they are similar according to a highly discriminatory molecular typing method. This has been demonstrated in outbreaks, but is rarely studied in endemic situations. Person-to-person transmission cannot be established when isolates of meticillin-resistant Staphylococcus aureus (MRSA) belong to endemically predominant genotypes. By contrast, isolates of infrequent genotypes might be more suitable for epidemiological tracking. The objective of the present study was to determine, in newly identified patients harbouring non-predominant MRSA genotypes, whether putative epidemiological links inferred from molecular typing could replace classical epidemiology in the context of a regional surveillance programme. MRSA genotypes were defined using double-locus sequence typing (DLST) combining clfB and spa genes. A total of 1,268 non-repetitive MRSA isolates recovered between 2005 and 2006 in Western Switzerland were typed: 897 isolates (71%) belonged to four predominant genotypes, 231 (18%) to 55 non-predominant genotypes, and 140 (11%) were unique. Obvious epidemiological links were found in only 106/231 (46%) patients carrying isolates with non-predominant genotypes suggesting that molecular surveillance identified twice as many clusters as those that may have been suspected with classical epidemiological links. However, not all of these molecular clusters represented person-to-person transmission. Thus, molecular typing cannot replace classical epidemiology but is complementary. A prospective surveillance of MRSA genotypes could help to target epidemiological tracking in order to recognise new risk factors in hospital and community settings, or emergence of new epidemic clones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice with homologous disruption of the gene coding for the ligand-binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN-gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared the phylogenetic diversity of methicillin-resistant Staphylococcus aureus (MRSA) strains from Switzerland and their phylogenetic relationships with European epidemic clones, using multiprimer random amplification polymorphic DNA (RAPD). Strains included 24 European epidemic clones (59 strains), 66 sporadic strains isolated in Switzerland in 1996-1997, and 15 reference strains of five other Staphylococcus species. Similarity and clustering analysis with the Jaccard's coefficient showed that the maximum genetic distance between MRSA strains was 0.43, whereas the minimum genetic distance between the six Staphylococcus species was 0.97, indicating that the method permits phylogenetic hierarchization. The 24 MRSA clones reported to be epidemic in European countries during the 1990s were distributed into seven different genetic clusters with a maximum distance of 0.29 among them. This clustering pattern was confirmed by the analysis of a subset of MRSA strains by multilocus enzyme electrophoresis at 12 loci. Most of the sporadic Swiss strains were distributed into these seven different genetic clusters, together with the epidemic MRSA clones. This suggests that there is no phylogenetic cluster specific to epidemic clones of MRSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-hemolytic Streptococcus agalactiae is the leading cause of bacteremia and invasive infections. These diseases are treated with β-lactams or macrolides, but the emergence of less susceptible and even fully resistant strains is a cause for concern. New bacteriophage lysins could be promising alternatives against such organisms. They hydrolyze the bacterial peptidoglycan at the end of the phage cycle, in order to release the phage progeny. By using a bioinformatic approach to screen several beta-hemolytic streptococci, a gene coding for a lysin was identified on a prophage carried by Streptococcus dysgalactiae subsp. equisimilis SK1249. The gene product, named PlySK1249, harbored an original three-domain structure with a central cell wall-binding domain surrounded by an N-terminal amidase and a C-terminal CHAP domain. Purified PlySK1249 was highly lytic and bactericidal for S. dysgalactiae (2-log10 CFU/ml decrease within 15 min). Moreover, it also efficiently killed S. agalactiae (1.5-log10 CFU/ml decrease within 15 min) but not several streptococcal commensal species. We further investigated the activity of PlySK1249 in a mouse model of S. agalactiae bacteremia. Eighty percent of the animals (n = 10) challenged intraperitoneally with 10(6) CFU of S. agalactiae died within 72 h, whereas repeated injections of PlySK1249 (45 mg/kg 3 times within 24 h) significantly protected the mice (P < 0.01). Thus, PlySK1249, which was isolated from S. dysgalactiae, demonstrated high cross-lytic activity against S. agalactiae both in vitro and in vivo. These encouraging results indicated that PlySK1249 might represent a good candidate to be developed as a new enzybiotic for the treatment of systemic S. agalactiae infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of dalbavancin, a representative of the lipoglycopeptide antibiotics, alone and in combination with rifampicin, was investigated against meticillin-resistant Staphylococcus aureus (MRSA) in a foreign-body infection model in guinea pigs. The MIC, MBC and time-kill profile of dalbavancin were determined for MRSA ATCC 43300 in the logarithmic (MBClog) and stationary (MBCstat) growth phases. The pharmacokinetic profile of dalbavancin was determined in sterile cage fluid in guinea pigs. The activity of intraperitoneal dalbavancin (40, 60 or 80mg/kg as a single dose), rifampicin (12.5mg/kg/12h for 4 days) and their combination was assessed against planktonic and biofilm MRSA. The MIC of dalbavancin was 0.078mg/L; MBClog and MBCstat were both >128Ã- MIC. In time-kill studies, bacterial reduction of 3log10CFU/mL was achieved after 48h at â0/00¥32Ã- MIC (logarithmic growth) and at â0/00¥1Ã- MIC (stationary growth). Dalbavancin was neither synergistic nor antagonistic with rifampicin, and prevented the emergence of rifampicin resistance in vitro. The half-life of dalbavancin in cage fluid was 35.8-45.4h and the concentration remained above the MIC of MRSA during 7 days after a single dose. Dalbavancin reduced planktonic MRSA in cage fluid at high dose (60mg/kg and 80mg/kg) but failed to eradicate biofilm MRSA from cages. In combination with rifampicin, dalbavancin at 80mg/kg cured 36% of infected cages, and emergence of rifampicin resistance was completely prevented. Dalbavancin at 80mg/kg and in combination with rifampicin eradicated approximately one-third of cage-associated MRSA infections and prevented emergence of rifampicin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Valanginian is marked by a major platform demise inducing a hiatus in the northern Tethyan neritic carbonate record from the top of the lower Valanginian to the lower Hauterivian. New biostratigraphic and chemostratigraphic data from the Ollioules section (Provence Platform, southern France) are presented here, demonstrating that a large part of the upper Valanginian is preserved in an inner platform environment. The thick, upper Valanginian, aggrading carbonate succession is observed in an aborted rift domain, implying relatively low subsidence. In this context, a relatively long-term sea-level rise was required to sustain a keep-up style of carbonate production. Like the Apulian Platform, the remarkable preservation of the Provence Platform may have been favored by its remoteness from terrigenous source areas, as suggested by the low clastic inputs and low P-accumulation rates. Two main biotic community replacements are observed in Ollioules. The first saw the development of abundant microbialites and algae at the onset of the late Valanginian. A Tubiphytes concentration occurred during the coolest climatic conditions and the transition towards arid conditions, whereas the subsequent Lithocodium-Bacinella and orbitolinids assemblages developed under low nutrient conditions during a warmer interval. Both assemblages may have been triggered by increased alkalinity. The second community replacement saw the installation of coral- and rudist-dominated communities during the latest Valanginian to early Hauterivian. They indicate a change to oligotrophic, open marine conditions. Six medium-scale sequences have been defined in Ollioules, indicating short-term transgressive-regressive trends superimposed on a long-term transgression. Low nutrient inputs and relatively low subsidence in an aggradational context may explain the survival of the isolated Provence Carbonate Platform during a time of widespread drowning episodes and platform demise in the northern Tethyan domain. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the morphological and electrophysiological changes underlying diabetic peripheral neuropathy (DPN) are relatively well described, the involved molecular mechanisms remain poorly understood. In this study, we investigated whether phenotypic changes associated with early DPN are correlated with transcriptional alterations in the neuronal (dorsal root ganglia [DRG]) or the glial (endoneurium) compartments of the peripheral nerve. We used Ins2(Akita/+) mice to study transcriptional changes underlying the onset of DPN in type 1 diabetes mellitus (DM). Weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Ins2(Akita/+) and control mice during the first three months of life in order to determine the onset of DPN. Based on this phenotypic characterization, we performed gene expression profiling using sciatic nerve endoneurium and DRG isolated from pre-symptomatic and early symptomatic Ins2(Akita/+) mice and sex-matched littermate controls. Our phenotypic analysis of Ins2(Akita/+) mice revealed that DPN, as measured by reduced MNCV, is detectable in affected animals already one week after the onset of hyperglycemia. Surprisingly, the onset of DPN was not associated with any major persistent changes in gene expression profiles in either sciatic nerve endoneurium or DRG. Our data thus demonstrated that the transcriptional programs in both endoneurial and neuronal compartments of the peripheral nerve are relatively resistant to the onset of hyperglycemia and hypoinsulinemia suggesting that either minor transcriptional alterations or changes on the proteomic level are responsible for the functional deficits associated with the onset of DPN in type 1 DM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The hepatitis C virus (HCV) NS3-4A protease is essential for the HCV life cycle and a prime target of antiviral treatment strategies. Protease inhibitors, however, are limited by emergence of resistance-associated amino acid variants (RAVs). The capacity to cleave and inactivate mitochondrial antiviral-signaling protein (MAVS) in the RIG-I-signaling pathway is a cardinal feature of NS3-4A, by which HCV blocks induction of interferon-(IFN)-β, thereby promoting viral persistence. Here, we aimed to investigate the impact of NS3-4A RAVs on MAVS cleavage. METHODS: The impact of NS3-4A RAVs on MAVS cleavage was assessed using immunoblot analyses, luciferase reporter assays and molecular dynamics simulations to study the underlying molecular principles. IFN-β was quantified in serum from patients with different NS3-4A RAVs. RESULTS: We show that macrocyclic NS3-4A RAVS with substitutions at residue D168 of the protease result in an increased capacity of NS3-4A to cleave MAVS and suppress IFN-β induction compared with a comprehensive panel of RAVs and wild type HCV. Mechanistically, we show the reconstitution of a tight network of electrostatic interactions between protease and the peptide substrate that allows much stronger binding of MAVS to D168 RAVs than to the wild-type protease. Accordingly, we could show IFN-β serum levels to be lower in patients with treatment failure due to the selection of D168 variants compared to R155 RAVs. CONCLUSIONS: Our data constitutes a proof of concept that the selection of RAVs against specific classes of direct antivirals can lead to the predominance of viral variants with possibly adverse pathogenic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydiae are obligate intracellular bacteria that share a unique but remarkably conserved biphasic developmental cycle that relies on a eukaryotic host cell for survival. Although the phylum was originally thought to only contain one family, the Chlamydiaceae, a total of nine families are now recognized. These so-called Chlamydia-like organisms (CLOs) are also referred to as 'environmental chlamydiae', as many were initially isolated from environmental sources. However, these organisms are also emerging pathogens, as many, such as Parachlamydia sp., Simkania sp. and Waddlia sp., have been associated with human disease, and others, such as Piscichlamydia sp. and Parilichlamydia sp., have been documented in association with diseases in animals. Their strict intracellular nature and the requirement for cell culture have been a confounding factor in characterizing the biology and pathogenicity of CLOs. Nevertheless, the genomes of seven CLO species have now been sequenced, providing new information on their potential ability to adapt to a wide range of hosts. As new isolation and diagnostic methods advance, we are able to further explore the richness of this phylum with further research likely to help define the true pathogenic potential of the CLOs while also providing insight into the origins of the 'traditional' chlamydiae.