193 resultados para Molecular stills.
Resumo:
The wreck U Pezzo, excavated within the Saint Florent Gulf in northern Corsica was identified as the pink, Saint Etienne, a merchant ship which sank on January 31, 1769. In order to determine the composition of organic materials used to coat the hull or to waterproof different parts of the pink, a study of several samples, using molecular biomarker and carbon isotopic analysis, was initiated. The results revealed that the remarkable yellow coat, covering the outside planks of the ship's bottom under the water line, is composed of sulfur, tallow (of ox and not of cetacean origin) and black pitch which corresponds to a mixture called ``couroi'' or ``stuff'. Onboard ropes had been submitted to a tarring treatment with pitch. Hairs mixed with pitch were identified in samples collected between the two layers of the hull or under the sheathing planking. The study also provides a key model for weathering of pitch, as different degrees of degradation were found between the surface and the heart of several samples. Accordingly, molecular parameters for alteration were proposed. Furthermore novel mixed esters between terpenic and diterpenic alcohols and the free major fatty acids (C(14:0), C(16:0), C(18:0)) were detected in the yellow coat. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: To report the first case of choroidal schwannoma in a patient affected by PTEN hamartoma tumor syndrome (PHTS) and investigate the molecular involvement of the phosphatase and tensin homolog (PTEN) and neurofibromin 2 (NF2) genes in this rare intraocular tumor. DESIGN: Observational case report. PARTICIPANT: A 10-year-old girl diagnosed with PHTS. METHODS: The enucleated specimen underwent histologic, immunohistochemical, and transmission electronic microscopy. The expression of PTEN and NF2 and their protein products were evaluated by reverse transcription-polymerase chain reaction and immunohistochemistry. Somatic mutations of PTEN and NF2, as well as allelic loss, were investigated by direct sequencing of DNA extracted from the tumor. PTEN epigenetic silencing was investigated by pyrosequencing. MAIN OUTCOME MEASURES: Histopathologic and molecular characterization of a choroidal pigmented schwannoma. RESULTS: Histopathologic, immunohistochemical, and electron microscopic analysis demonstrated features consistent with a pigmented cellular schwannoma of the choroid. We found no loss of heterozygosity at the genomic level for the PTEN germline mutation and no promoter hypermethylation or other somatic intragenic mutations. However, we observed an approximate 40% reduction of PTEN expression at both the mRNA and the protein level, indicating that the tumor was nonetheless functionally deficient for PTEN. Although DNA sequencing of NF2 failed to identify any pathologic variants, its expression was abolished within the tumor. CONCLUSIONS: We report the first description of a pigmented choroidal schwannoma in the context of a PHTS. This rare tumor showed a unique combination of reduction of PTEN and absence of NF2 expression.
Resumo:
Coagulation factor V (FV) deficiency is characterised by variable bleeding phenotypes and heterogeneous mutations. To add new insights into the FV genotype-phenotype relationship, we characterised the R1698W change in the A3 domain, at the poorly investigated interface with the A2 domain. The FV R1698W mutation was responsible for a markedly reduced expression level (10% of FV-WT) and specific activity in thrombin generation (0.39). Interestingly, the FVa1698W showed rapid activity decay upon activation due to increased dissociation rate between the heavy and light chains. The importance of the size and charge of the residue at position 1698 was investigated by three additional recombinant mutants, FVR1698A, FVR1698Q, and FVR1698E. FVR1698A and FVR1698Q expression (30 and 45% of FV-WT), specific activity (both 0.57) and stability were all reduced. Noticeably, FVR1698E showed normal activity and stability despite poor expression (10% of FV-WT). These data indicate the essential role of R1698 for normal biosynthetic process and support local flexibility for positively or negatively charged residues to produce stable and functional A3-A2 domain interactions. Their experimental alteration produces a gradient of FV defects, which help to interpret the wide spectrum of phenotypes in FV-deficient patients.
Resumo:
Many root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify the pqqC gene of the Pseudomonas genus, were designed. pqqC fragments were amplified and sequenced from a Pseudomonas strain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based on pqqC sequences were compared to trees obtained with the two concatenated housekeeping genes rpoD and gyrB. For both pqqC and rpoD-gyrB, similar main phylogenetic clusters were found. However, in the pqqC but not in the rpoD-gyrB tree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside the Pseudomonas fluorescens group. pqqC sequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups than pqqC sequences derived from the cultivation-independent approach. Comparing pqqC phylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the gene pqqC is a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.
Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features.
Resumo:
BACKGROUND: Differences exist between the proximal and distal colon in terms of developmental origin, exposure to patterning genes, environmental mutagens, and gut flora. Little is known on how these differences may affect mechanisms of tumorigenesis, side-specific therapy response or prognosis. We explored systematic differences in pathway activation and their clinical implications. MATERIALS AND METHODS: Detailed clinicopathological data for 3045 colon carcinoma patients enrolled in the PETACC3 adjuvant chemotherapy trial were available for analysis. A subset of 1404 samples had molecular data, including gene expression and DNA copy number profiles for 589 and 199 samples, respectively. In addition, 413 colon adenocarcinoma from TCGA collection were also analyzed. Tumor side-effect on anti-epidermal growth factor receptor (EGFR) therapy was assessed in a cohort of 325 metastatic patients. Outcome variables considered were relapse-free survival and survival after relapse (SAR). RESULTS: Proximal carcinomas were more often mucinous, microsatellite instable (MSI)-high, mutated in key tumorigenic pathways, expressed a B-Raf proto-oncogene, serine/threonine kinase (BRAF)-like and a serrated pathway signature, regardless of histological type. Distal carcinomas were more often chromosome instable and EGFR or human epidermal growth factor receptor 2 (HER2) amplified, and more frequently overexpressed epiregulin. While risk of relapse was not different per side, SAR was much poorer for proximal than for distal stage III carcinomas in a multivariable model including BRAF mutation status [N = 285; HR 1.95, 95% CI (1.6-2.4), P < 0.001]. Only patients with metastases from a distal carcinoma responded to anti-EGFR therapy, in line with the predictions of our pathway enrichment analysis. CONCLUSIONS: Colorectal carcinoma side is associated with differences in key molecular features, some immediately druggable, with important prognostic effects which are maintained in metastatic lesions. Although within side significant molecular heterogeneity remains, our findings justify stratification of patients by side for retrospective and prospective analyses of drug efficacy and prognosis.
Resumo:
In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.
Resumo:
The tubero-infundibular and nigrostriatal DA neurone systems of rats respond to systemic (i.p.) injection of alpha-MSH (2-100 microgram/kg). The response of the tubero-infundibular (arcuate) DA neurones, an increase in cellular fluorescence intensity which can be interpreted as a sign of increased neuronal activity, is essentially the same in males, estrogen-progesterone-pretreated ovariectomized females and hypophysectomized males, whereas the type of response elicited by alpha-MSH in the nigral DA neurones depends upon the hormonal state of the animal. Differences between the two DA neurone groups exist also with regard to the effects of peptide fragments containing the two active sites of the alpha-MSH molecule. Results of lesion experiments in the lower brainstem (area postrema) and of blockade of muscarinic mechanisms by atropine further point to differences in the mechanisms underlying the peptide effects on the two neurone systems. The reaction of the tubero-infundibular DA system (which controls the pars intermedia of the pituitary) can be considered to reflect the activation of a feedback mechanism on MSH secretion, while the functional counterpart of the changes observed in the nigral system remains unknown at the present time.
Resumo:
STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.
Resumo:
The olfactory system is an attractive model to study the genetic mechanisms underlying evolution of the nervous system. This sensory system mediates the detection and behavioural responses to an enormous diversity of volatile chemicals in the environment and displays rapid evolution, as species acquire, modify and discard olfactory receptors and circuits to adapt to new olfactory stimuli. Drosophilids provide an attractive model to study these processes. The availability of 12 sequenced genomes of Drosophila species occupying diverse ecological niches provides a rich resource for genomic analyses. Moreover, one of these species, Drosophila melanogaster, is amenable to a powerful combination of genetic and electrophysiological analyses. D. melanogaster has two distinct families of olfactory receptors to detect odours, the well-characterised Odorant Receptors (ORs) and the recently identified lonotropic Receptors (IRs). In my thesis, I have provided new insights into the genetic mechanisms underlying olfactory system evolution through three distinct, but interrelated projects. First, I performed a comparative genomic analysis of the IR repertoire in 12 sequenced Drosophila species, which has revealed that the olfactory IRs are highly conserved across species. By contrast, a large fraction of IRs that are not expressed in the olfactory system - and which may be gustatory receptors - are much more variable in sequence and gene copy number. Second, to identify ligands for IR expressing olfactory sensory neurons, I have performed an electrophysiological screen in D. melanogaster using a panel of over 160 odours. I found that the IRs respond to a number of amines, aldehydes and acids, contrasting with the chemical specificity of the OR repertoire, which is mainly tuned to esters, alcohols and ketones. Finally, the identification of ligands for IRs in this species allowed me to investigate in detail the molecular and functional evolution of a tandem array of IRs, IR75a/IR75b/IR75c, in D. sechellia. This species is endemic to the Seychelles archipelago and highly specialised to breed on the fruits of Morinda citrifolia, which is repulsive and toxic for other Drosophila species. These studies led me to discover that receptor loss, changes in receptor specificity and changes in receptor expression have likely played an important role during the evolution of these IRs in D. sechellia. These changes may explain, in part, the unique chemical ecology of this species. - Le système olfactif est un excellent modèle pour étudier les mécanismes génétiques impliqués dans l'étude de l'évolution du système nerveux. Ce système sensoriel permet la détection de nombreux composés volatils présents dans l'environnement et est à la base des réponses comportementales. Il est propre à chaque espèce et évolue rapidement en modifiant ou en éliminant des récepteurs et leurs circuits olfactifs correspondants pour s'adapter à de nouvelles odeurs. Pour étudier le système olfactif et son évolution, nous avons décidé d'utiliser la drosophile comme modèle. Le séquençage complet de 12 souches de drosophiles habitant différentes niches écologiques permet une analyse génomique conséquente. De plus, l'une de ces espèces Drosophila melanogaster permet la combinaison d'analyses génétiques et électrophysiologiques. En effet, D. melanogaster possède 2 familles distinctes de récepteurs olfactifs qui permettent la détection d'odeurs: les récepteurs olfactifs (ORs) étant les mieux caractérisés et les récepteurs ionotropiques (IRs), plus récemment identifiés. Au cours de ma thèse, j'ai apporté des nouvelles connaissances qui m'ont permis de mieux comprendre les mécanismes génétiques à la base de l'évolution du système olfactif au travers de trois projets différents, mais interdépendants. Premièrement, j'ai réalisé une analyse génomique comparative de l'ensemble des IRs dans les 12 souches de drosophiles séquencées jusqu'à présent. Ceci a montré que les récepteurs olfactifs IRs sont hautement conservés parmi l'ensemble de ces espèces. Au contraire, une grande partie des IRs qui ne sont pas exprimés dans le système olfactif, et qui semblent être des récepteurs gustatifs, sont beaucoup plus variables dans leur séquence et dans le nombre de copie de gènes. Deuxièmement, pour identifier les ligands des récepteurs IRs exprimés par les neurones sensoriels olfactifs, j'ai réalisé une étude électrophysiologique chez D. melanogaster e η testant l'effet de plus de 160 composés chimiques sur les IRs. J'ai trouvé que les IRs répondent à un nombre d'amines, d'aldéhydes et d'acides, contrairement aux récepteurs olfactifs ORs qui eux répondent principalement aux esthers, alcools et cétones. Finalement, l'identification de ligands pour les IRs dans ces espèces m'a permis d'étudier en détail l'évolution fonctionnelle et moléculaire des IR75a/IR75b/IR75c dans D. sechellia. Cette espèce est endémique de l'archipel des Seychelles et se nourrit spécifiquement du fruit Morinda citrifolia qui est répulsif et toxique pour d'autres souches de drosophiles. Ces études m'ont poussé à découvrir que, la perte de IR75a, le changement dans la spécificité de IR75b ainsi que le changement dans l'expression de IR75c ont probablement joué un rôle important dans l'évolution des IRs chez D. sechellia. Ces changements peuvent expliquer, en partie, l'écologie chimique propre à cette espèce. Résumé français large public Le système olfactif permet aux animaux de détecter des milliers de molécules odorantes, les aidant ainsi à trouver de la nourriture, à distinguer si elle est fraîche ou avariée, à trouver des partenaires sexuels, ainsi qu'à éviter les prédateurs. Selon l'environnement et le mode de vie des espèces, le système olfactif doit détecter des odeurs très diverses ; en effet, un moustique qui recherche du sang humain pour se nourrir doit détecter des odeurs bien différentes d'une abeille qui recherche des fleurs. Dans ma thèse, j'ai essayé de comprendre comment les systèmes olfactifs d'une espèce évoluent pour s'adapter aux exigences induites par son environnement. Un très bon modèle pour étudier cela est la drosophile dont les différentes espèces se nichent dans des habitats très divers. Pour ce faire, j'ai étudié les récepteurs olfactifs de différentes espèces de la drosophile. Ces récepteurs sont des protéines qui se lient à des odeurs spécifiques. Lorsqu'ils se lient, ils activent un neurone qui envoie un signal électrique au cerveau. Ce signal est ensuite traité par ce dernier qui indique à la mouche si l'odeur est attractive ou répulsive. J'ai identifié les récepteurs olfactifs de plusieurs espèces de drosophile et étudié s'il y avait des différences entre elles. La plupart des récepteurs sont similaires entre les espèces, cependant dans l'une d'entre elles, certains récepteurs sont différents. Ce fait est particulièrement intéressant car cette espèce de drosophile se nourrit de fruits que les autres espèces n'apprécient pas. Comme nous ne savons pas quels récepteurs se lient à quelles odeurs, j'ai testé un grand nombre de composants odorants. Ceci m'a permis de constater que, effectivement, certains changements produits dans ces récepteurs expliquent pourquoi cette espèce aime particulièrement ces fruits. En outre, mes résultats contribuent à mieux comprendre les changements génétiques qui sont impliqués dans l'évolution du système olfactif.
Resumo:
Phylogenetic reconstructions have supported several independent appearances of C₄ photosynthesis within grasses (Poaceae). These recurrent appearances appear to contradict the large number of biochemical and morphological changes required to change from C₃ to C₄, a paradox that leads to questions about the genetic changes underlying C₄ evolution. In this study, we analysed sequences encoding phosphoenolpyruvate carboxylases (PEPCs) in grasses in order to gain insights into the origin of the ppc-C₄ gene, which encodes a key enzyme in the C₄ pathway. We screened databanks for PEPC genes or cDNAs in grasses. A coding sequence of 1130 base pairs was used to build phylogenetic trees that supported the existence of four distinct PEPC gene lineages. Ppc-C₄ present in all C₄ grasses was also found in two C₃ species. The ppc-C₄ clade was congruent with the species tree, suggesting orthologous evolution. This result would imply that ppc-C₄ appeared without any duplication event. Nevertheless, caution is needed since the sampling of our study is still far from comprehensive. Further investigation with an increased sampling is recommended to elucidate the evolutionary changes underlying ppc-C₄ gene evolution in grasses.
Resumo:
OBJECTIVES: Representative prevalence data of transmitted drug-resistant HIV-1 are essential to establish accurate guidelines addressing resistance testing and first-line treatments. METHODS: Systematic resistance testing was carried out in individuals in Switzerland with documented HIV-1 seroconversion during 1996-2005 and available samples with RNA > 1000 copies/ml obtained within 1 year of estimated seroconversion. Resistance interpretation used the Stanford list of mutations for surveillance of transmitted drug resistance and the French National Agency for AIDS Research algorithm. RESULTS: Viral sequences from 822 individuals were available. Risk groups were men having sex with men (42%), heterosexual contacts (32%) and intravenous drug users (20%); 30% were infected with non-B subtype viruses. Overall, prevalence of transmitted resistance was 7.7% [95% confidence interval (CI), 5.9-9.5] for any drug, 5.5% (95% CI, 3.9-7.1) for nucleoside reverse transcriptase inhibitors, 1.9% (95% CI, 1.0-2.8) for non-nucleoside reverse transcriptase inhibitors and 2.7% (95% CI, 1.6-3.8) for protease inhibitors. Dual- or triple-class resistance was observed in 2% (95% CI, 0.8-2.5). No significant trend in prevalence of transmitted resistance was observed over years. There were no differences according to ethnicity, risk groups or gender, but prevalence of transmitted resistance was highest among individuals infected with subtype B virus. CONCLUSIONS: The transmission rate of drug-resistant HIV-1 has been stable since 1996, with very rare transmission of dual- or triple-class resistance. These data suggest that transmission of drug resistance in the setting of easy access to antiretroviral treatment can remain stable and be kept at a low level.
Resumo:
In the ecologically important arbuscular mycorrhizal fungi (AMF), Sod1 encodes a functional polypeptide that confers increased tolerance to oxidative stress and that is upregulated inside the roots during early steps of the symbiosis with host plants. It is still unclear whether its expression is directed at scavenging reactive oxygen species (ROS) produced by the host, if it plays a role in the fungus-host dialogue, or if it is a consequence of oxidative stress from the surrounding environment. All these possibilities are equally likely, and molecular variation at the Sod1 locus can possibly have adaptive implications for one or all of the three mentioned functions. In this paper, we analyzed the diversity of the Sod1 gene in six AMF species, as well as 14 Glomus intraradices isolates from a single natural population. By sequencing this locus, we identified a large amount of nucleotide and amino acid molecular diversity both among AMF species and individuals, suggesting a rapid divergence of its codons. The Sod1 gene was monomorphic within each isolate we analyzed, and quantitative PCR strongly suggest this locus is present as a single copy in G. intraradices. Maximum-likelihood analyses performed using a variety of models for codon evolution indicated that a number of amino acid sites most likely evolved under the regime of positive selection among AMF species. In addition, we found that some isolates of G. intraradices from a natural population harbor very divergent orthologous Sod1 sequences, and our analysis suggested that diversifying selection, rather than recombination, was responsible for the persistence of this molecular diversity within the AMF population.
Resumo:
Staphylococcus aureus, especially when it is methicillin resistant, has been recognised as a major cause of nosocomial and community-acquired infections. It has also been shown that certain strains were able to cause clonal epidemics whereas others showed a more incidental occurrence. On the basis of this behavioural distinction, a genetic feature underlying this difference in epidemicity can be assumed. Understanding the difference will not only contribute to the development of markers for the identification of epidemic strains but will also shed light on the evolution of clones. Genomes of strains from two independent collections (n=18 and n=10 strains) were analysed. Both collections were composed of carefully selected, genetically diverse strains with clinically well-defined epidemic and sporadic behaviour. Comparative genome hybridisation (CGH) was performed using an Agilent array for one collection (up to 11 probes per open reading frame - ORF), and an Affymetrix array for the other (up to 30 probes per ORF). Presence and absence information of probe homologues and ORFs was taken for analysis of molecular variance (AMOVA) at the strain and behaviour levels. Not a single probe showed 100% concordant differences between epidemic and sporadic strains. Moreover, probe differences between groups were always smaller than those within groups. This was also true, when the analysis was focussed on presence versus absence of ORF's or when probe information was transformed into allelic profiles. These findings present strong evidence against the presence or absence of a single common specific genetic factor differentiating epidemic from sporadic S. aureus clones.