193 resultados para MDSC calorimetry
Resumo:
To study the influence of the menstrual cycle on whole body thermal balance and on thermoregulatory mechanisms, metabolic heat production (M) was measured by indirect calorimetry and total heat losses (H) were measured by direct calorimetry in nine women during the follicular (F) and the luteal (L) phases of the menstrual cycle. The subjects were studied while exposed for 90 min to neutral environmental conditions (ambient temperature 28 degrees C, relative humidity 40%) in a direct calorimeter. The values of M and H were not modified by the phase of the menstrual cycle. Furthermore, in both phases the subjects were in thermal equilibrium because M was similar to H (69.7 +/- 1.8 and 72.1 +/- 1.8 W in F and 70.4 +/- 1.9 and 71.4 +/- 1.7 W in L phases, respectively). Tympanic temperature (Tty) was 0.24 +/- 0.07 degrees C higher in the L than in the F phase (P less than 0.05), whereas mean skin temperature (Tsk) was unchanged. Calculated skin thermal conductance (Ksk) was lower in the L (17.9 +/- 0.6 W.m-2.degrees C-1) than in the F phase (20.1 +/- 1.1 W.m-2.degrees C-1; P less than 0.05). Calculated skin blood flow (Fsk) was also lower in the L (0.101 +/- 0.008 l.min-1.m-2) than in the F phase (0.131 +/- 0.015 l.min-1.m-2; P less than 0.05). Differences in Tty, Ksk, and Fsk were not correlated with changes in plasma progesterone concentration. It is concluded that, during the L phase, a decreased thermal conductance in women exposed to a neutral environment allows the maintenance of a higher internal temperature.
Resumo:
To determine the metabolic effects of a single bout of exercise performed after a meal or in the fasting state, nine healthy subjects were studied over two 8-h periods during which net substrate oxidation was monitored by indirect calorimetry. On one occasion, exercise was performed 90 min after ingestion of a meal labeled with [U-13C]glucose [protocol meal-exercise (M-E)]. On the second occasion, exercise was performed after an overnight fast and was followed 30 min later by ingestion of an identical meal [protocol exercise-meal (E-M)]. Energy balances were similar in both protocols, but carbohydrate balance was positive (42.2 +/- 5.1 g), and lipid balance was negative (-11.1 +/- 2.0) during E-M, whereas they were nearly even during M-E. Total glycogen synthesis was calculated as carbohydrate intake minus oxidation of exogenous 13C-labeled carbohydrate (calculated from 13CO2 production). Total glycogen synthesis was increased by 90% (from 47.6 +/- 3.8 to 90.7 +/- 5.4 g, P < 0.0001) during E-M vs. M-E. Endogenous glycogen breakdown was calculated as net carbohydrate oxidation minus oxidation of exogenous carbohydrate and was increased by 44% (from 35.8 +/- 5.6 to 51.7 +/- 6.6 g, P < 0.004) during E-M. It is concluded that exercise performed in the fasting state stimulates glycogen turnover and fat oxidation.
Resumo:
Non-invasive methods, including stable isotope techniques, indirect calorimetry, nutritional balance and skinfold thickness, have given a new insight into early postnatal growth in neonates. Neonates and premature infants in particular, create an unusual opportunity to study the fluid and metabolic adaptation to extrauterine life because their physical environment can be controlled, fluid and energy balance can be measured and the link between metabolism and the energetics of their postnatal growth can be assessed accurately. Thus the postnatal time course of total body water, heat production, energy cost of growth and composition of weight gain have been quantified in a series of "healthy" low-birth-weight premature infants. These results show that total body water is remarkably stable between postnatal days 3-21. Energy expenditure and heat production rates increase postnatally from mean values of 40 kcal/kg/day during the first week to 60 kcal/kg/day in the third week. An apparent energy balance deficit of 180 kcal/kg can be ascribed to premature delivery. The cost of protein metabolism is the highest energy demanding process related to growth. The fact that nitrogen balance becomes positive within 72 h after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism during early postnatal growth: skinfold thickness, dry body mass and fat decrease, while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches statural growth. The goals of the following review are to summarize data on total body water and energy metabolism in premature infants and to discuss how they correlate with physiological aspects of early postnatal growth.
Resumo:
To assess the effect of a fructose meal on resting energy expenditure (EE), indirect calorimetry was used in 23 women (10 lean and 13 obese) for 30 min before and 6 h after the ingestion of a mixed meal containing 20% protein, 33% fat, and either 75 g glucose or 75 g fructose as carbohydrate source (47%). Expressed as a percentage of the energy content of the meal, the thermogenic response to the fructose meal was significantly greater (10.2 +/- 0.5%) than that of the glucose meal (8.4 +/- 0.4%, P less than 0.01). This difference was still apparent when the lean and obese women were considered separately. The mean respiratory quotient during the 6-h postprandial period was significantly greater (P less than 0.01) for the fructose (0.85 +/- 0.01) than for the glucose meal (0.83 +/- 0.01) in the combined subjects. In addition, cumulative carbohydrate oxidation was significantly greater after the fructose than after the glucose meal (51.1 +/- 2.3 vs. 40.9 +/- 2.0 g/6 h, respectively, P less than 0.01). Only small changes were observed in postprandial plasma levels of glucose and insulin after the fructose meal, but the plasma levels of lactate increased more with fructose than with the glucose meal. These results suggest that there might be some advantages (higher thermogenesis and carbohydrate oxidations) in using fructose as part of the carbohydrate source in diet of people with obesity and/or insulin resistance.
Resumo:
BACKGROUND: Enteral nutrition (EN) is recommended for patients in the intensive-care unit (ICU), but it does not consistently achieve nutritional goals. We assessed whether delivery of 100% of the energy target from days 4 to 8 in the ICU with EN plus supplemental parenteral nutrition (SPN) could optimise clinical outcome. METHODS: This randomised controlled trial was undertaken in two centres in Switzerland. We enrolled patients on day 3 of admission to the ICU who had received less than 60% of their energy target from EN, were expected to stay for longer than 5 days, and to survive for longer than 7 days. We calculated energy targets with indirect calorimetry on day 3, or if not possible, set targets as 25 and 30 kcal per kg of ideal bodyweight a day for women and men, respectively. Patients were randomly assigned (1:1) by a computer-generated randomisation sequence to receive EN or SPN. The primary outcome was occurrence of nosocomial infection after cessation of intervention (day 8), measured until end of follow-up (day 28), analysed by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00802503. FINDINGS: We randomly assigned 153 patients to SPN and 152 to EN. 30 patients discontinued before the study end. Mean energy delivery between day 4 and 8 was 28 kcal/kg per day (SD 5) for the SPN group (103% [SD 18%] of energy target), compared with 20 kcal/kg per day (7) for the EN group (77% [27%]). Between days 9 and 28, 41 (27%) of 153 patients in the SPN group had a nosocomial infection compared with 58 (38%) of 152 patients in the EN group (hazard ratio 0·65, 95% CI 0·43-0·97; p=0·0338), and the SPN group had a lower mean number of nosocomial infections per patient (-0·42 [-0·79 to -0·05]; p=0·0248). INTERPRETATION: Individually optimised energy supplementation with SPN starting 4 days after ICU admission could reduce nosocomial infections and should be considered as a strategy to improve clinical outcome in patients in the ICU for whom EN is insufficient. FUNDING: Foundation Nutrition 2000Plus, ICU Quality Funds, Baxter, and Fresenius Kabi.
Resumo:
AIMS: To study weight, length, body composition, sleeping energy expenditure (SEE), and respiratory quotient (RQ) at birth and at 5 mo of age in both adequate-for-gestational-age (AGA) and large-for-gestational-age (LGA) subjects; to compare the changes in body weight and body composition adjusting for gender, age, SEE, RQ and several maternal factors; to investigate the contribution of initial SEE and RQ to changes in body weight and body composition. METHODS: Sixty-nine neonates were recruited among term infants in the University Hospital of Verona, Italy. Forty-nine subjects participated until follow-up. At birth and follow-up, weight and length were measured and arm-fat area and arm-muscle area were calculated from triceps and subscapular skinfolds. SEE and RQ were measured by indirect calorimetry. RESULTS: At birth, weight, length, arm-muscle and arm-fat areas were significantly higher in LGA subjects than in AGA subjects. Weight status, SEE and RQ at birth did not explain the relative weight change after adjusting for gestational weight, placental weight, age at follow-up and gender. Arm-fat area and weight/length ratio at birth were negatively associated with relative changes in body weight after adjusting for the above variables (p < 0.05). CONCLUSION: Early growth from birth to 5 mo of life is significantly affected by body size and adiposity at birth. Fatter newborns had a slower growth rate than thinner newborns.
Resumo:
T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses. Together these assays indicated a high energy efficiency of the high crawling frequency CD8+ T-cell population, and identified differentially regulated heat production among nonlymphoid versus lymphoid homing CD8+ T cells.
Resumo:
Previous investigations in experimental animals have shown that a new type of beta-adrenoceptor agonist (Ro 16-8714) possesses both thermogenic and antihyperglycemic properties. The aim of the study was to assess the thermogenic capacity of the compound in man after acute administration. Following an overnight fast three different doses (5, 10 and 20 mg) and a placebo were given per os to six normal-weight young men. The rate of energy expenditure (EE) and substrate utilization were determined by indirect calorimetry (hood system) before and for 6 h following the drug administration. Heart rate and blood pressure as well as plasma glucose, insulin and free fatty acid (FFA) concentrations were also measured at regular intervals throughout the study. The increment relative to base-line (mean +/- s.e.m.) in EE with placebo, 5, 10 and 20 mg was 4 +/- 3, 10 +/- 2, 11 +/- 2 and 21 +/- 2 percent respectively whereas heart rate was enhanced by 2 +/- 2, 8 +/- 3, 22 +/- 2, and 49 +/- 8 percent. Systolic blood pressure increased less (1 +/- 2, 8 +/- 1, 11 +/- 1 and 13 +/- 2 percent), and diastolic blood pressure did not change significantly. Simultaneously we observed a slight and transient increase in blood glucose, insulin and FFA concentrations. It is concluded that in lean individuals Ro 16-8714 is a potent thermogenic agent; however, new beta-adrenoceptor agonists should be developed in order to avoid the tachycardia associated with the thermogenic effect.
Resumo:
Maximal fat oxidation (MFO), as well as the exercise intensity at which it occurs (Fatmax), have been reported as lower in sedentary overweight individuals but have not been studied in trained overweight individuals. The aim of this study was to compare Fatmax and MFO in lean and overweight recreationally trained males matched for cardiorespiratory fitness (CRF) and to study the relationships between these variables, anthropometric characteristics, and CRF. Twelve recreationally trained overweight (high fatness (HiFat) group, 30.0% ± 5.3% body fat) and 12 lean males (low fatness (LoFat), 17.2% ± 5.7% body fat) matched for CRF (maximal oxygen consumption (V̇O2max) 39.0 ± 5.5 vs. 41.4 ± 7.6 mL·kg(-1)·min(-1), p = 0.31) and age (p = 0.93) performed a graded exercise test on a cycle ergometer. V̇O2max and fat and carbohydrate oxidation rates were determined using indirect calorimetry; Fatmax and MFO were determined with a mathematical model (SIN); and % body fat was assessed by air displacement plethysmography. MFO (0.38 ± 0.19 vs. 0.42 ± 0.16 g·min(-1), p = 0.58), Fatmax (46.7% ± 8.6% vs. 45.4% ± 7.2% V̇O2max, p = 0.71), and fat oxidation rates over a wide range of exercise intensities were not significantly different (p > 0.05) between HiFat and LoFat groups. In the overall cohort (n = 24), MFO and Fatmax were correlated with V̇O2max (r = 0.46, p = 0.02; r = 0.61, p = 0.002) but not with % body fat or body mass index (p > 0.05). Fat oxidation during exercise was similar in recreationally trained overweight and lean males matched for CRF. Consistently, substrate oxidation rates during exercise were not related to adiposity (% body fat) but were related to CRF. The benefits of high CRF independent of body weight and % body fat should be further highlighted in the management of obesity.
Resumo:
The results of recent large-scale clinical trials have led us to review our understanding of the metabolic response to stress and the most appropriate means of managing nutrition in critically ill patients. This review presents an update in this field, identifying and discussing a number of areas for which consensus has been reached and others where controversy remains and presenting areas for future research. We discuss optimal calorie and protein intake, the incidence and management of re-feeding syndrome, the role of gastric residual volume monitoring, the place of supplemental parenteral nutrition when enteral feeding is deemed insufficient, the role of indirect calorimetry, and potential indications for several pharmaconutrients.
Resumo:
BACKGROUND & AIMS: Protein and energy requirements in critically ill children are currently based on insufficient data. Moreover, longitudinal measurements of both total urinary nitrogen (TUN) and resting energy expenditure (REE) are lacking. The aim of this study was to investigate how much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children on the basis of daily measurements of TUN, REE and protein and energy intakes. Comparisons were made with the guidelines of the American Society for Parenteral and Enteral Nutrition and the Dietary Reference Intakes. METHODS: Children with an expected duration of mechanical ventilation ≥72 h were prospectively recruited. TUN was measured by chemiluminescence, and REE was measured by indirect calorimetry. Generalised linear models for longitudinal data were used to study the relation between protein intake and nitrogen balance and to calculate the minimum intake of protein needed to achieve nitrogen equilibrium. A similar approach was used for energy. Results were compared to the recommended values. RESULTS: Based on 402 measurements performed in 74 children (median age: 21 months), the mean TUN was high at 0.20 (95% CI: 0.20, 0.22) g/kg/d and the REE was 55 (95% CI: 54, 57) kcal/kg/d. Nitrogen and energy balances were achieved with 1.5 (95% CI: 1.4, 1.6) g/kg/d of protein and 58 (95% CI: 53, 63) kcal/kg/d for the entire group, but there were differences among children of different ages. Children required more protein and less energy than the Dietary Reference Intakes. CONCLUSIONS: In critically ill children, TUN was elevated and REE was reduced during the entire period of mechanical ventilation. Minimum intakes of 1.5 g/kg/d of protein and 58 kcal/kg/d can equilibrate nitrogen and energy balances in children up to 4 years old. Older children require more protein.
Resumo:
PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.
Resumo:
The purpose of this study was to estimate the energy cost of linear (EC) and vertical displacement (ECvert), mechanical efficiency and main stride parameters during simulated ski mountaineering at different speeds and gradients, to identify an optimal speed and gradient that maximizes performance. 12 subjects roller skied on a treadmill at three different inclines (10, 17 and 24 %) at three different speeds (approximately 70, 80 and 85 % of estimated peak heart rate). Energy expenditure was calculated by indirect calorimetry, while biomechanical parameters were measured with an inertial sensor-based system. At 10 % there was no significant change with speed in EC, ECvert and mechanical efficiency. At 17 and 24 % the fastest speed was significantly more economical. There was a significant effect of gradient on EC, ECvert and mechanical efficiency. The most economical gradient was the steepest one. There was a significant increase of stride frequency with speed. At steep gradients only, relative thrust phase duration decreased significantly, while stride length increased significantly with speed. There was a significant effect of gradient on stride length (decrease with steepness) and relative thrust phase duration (increase with steepness). A combination of a decreased relative thrust phase duration with increased stride length and frequency decreases ECvert. To minimize the energy expenditure to reach the top of a mountain and to optimize performance, ski-mountaineers should choose a steep gradient (~24 %) and, provided they possess sufficient metabolic scope, combine it with a fast speed (~6 km h(-1)).