325 resultados para Liver immunology
Resumo:
Purpose: To evaluate whether parametric imaging with contrast material-enhanced ultrasonography (US) is superior to visual assessment for the differential diagnosis of focal liver lesions (FLLs). Materials and Methods: This study had institutional review board approval, and verbal patient informed consent was obtained. Between August 2005 and October 2008, 146 FLLs in 145 patients (63 women, 82 men; mean age, 62.5 years; age range, 22-89 years) were imaged with real-time low-mechanical-index contrast-enhanced US after a bolus injection of 2.4 mL of a second-generation contrast agent. Clips showing contrast agent uptake kinetics (including arterial, portal, and late phases) were recorded and subsequently analyzed off-line with dedicated image processing software. Analysis of the dynamic vascular patterns (DVPs) of lesions with respect to adjacent parenchyma allowed mapping DVP signatures on a single parametric image. Cine loops of contrast-enhanced US and results from parametric imaging of DVP were assessed separately by three independent off-site readers who classified each lesion as benign, malignant, or indeterminate. Sensitivity, specificity, accuracy, and positive and negative predictive values were calculated for both techniques. Interobserver agreement (κ statistics) was determined. Results: Sensitivities for visual interpretation of cine loops for the three readers were 85.0%, 77.9%, and 87.6%, which improved significantly to 96.5%, 97.3%, and 96.5% for parametric imaging, respectively (P < .05, McNemar test), while retaining high specificity (90.9% for all three readers). Accuracy scores of parametric imaging were higher than those of conventional contrast-enhanced US for all three readers (P < .001, McNemar test). Interobserver agreement increased with DVP parametric imaging compared with conventional contrast-enhanced US (change of κ from 0.54 to 0.99). Conclusion: Parametric imaging of DVP improves diagnostic performance of contrast-enhanced US in the differentiation between malignant and benign FLLs; it also provides excellent interobserver agreement.
Resumo:
Hematopoietic stem cells (HSCs), with their dual ability for self-renewal and multilineage differentiation, constitute an essential component of hematopoietic transplantations. Human fetal liver (FL) represents a promising alternative HSC source, and we previously reported simple culture conditions allowing long-term expansion of FL hematopoietic progenitors. In the present study, we used the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenotransplantation assay to confirm that human FL is rich in NOD/SCID-repopulating cells (SRCs) and to show that these culture conditions repeatedly maintained short- and long-term SRCs from various FL samples for at least 28 days. Quantitative limited dilution analysis in NOD/SCID mice demonstrated for the first time that a 10- to over a 100-fold net expansion of FL SRCs could be achieved after 28 days of culture. The efficiency of this culture system may lead to an increase in the use of FL as a source of HSCs for transplantation in adult patients, as previously demonstrated with umbilical cord blood under different culture conditions.
Resumo:
Interleukin (IL)-12p40, a subunit of IL-12p70 and IL-23, has previously been shown to inhibit IL-12p70 activity and interferon-gamma (IFN-gamma) production. However, recent evidence has suggested that the role of IL-12p40 is more complex. To study the contribution of IL-12p40 to immune responses against mycobacterial infections, we have used transgenic (tg) mice overexpressing IL-12p40 under the control of a major histocompatibility complex-II promoter. The IL-12p40 transgene was expressed during steady state at concentrations of 129 +/- 25 ng/ml of serum and 75 +/- 13 ng per spleen, while endogenous IL-12p40 was hardly detectable in control littermates. Bacille Calmette-Guérin (BCG) infection strongly induced the expression of IL-12p40 transgene in infected organs, and IL-12p40 monomeric and dimeric forms were identified in spleen of IL-12p40 tg mice. Excessive production of IL-12p40 resulted in a 14-fold increase in IL-12p70 serum levels in tg mice versus non-transgenic mice. IL-23 was also strongly elevated in the serum and spleens of IL-12p40 tg mice through BCG infection. While IFN-gamma and tumour necrosis factor protein levels were similar in IL-12p40 tg and non-transgenic mice, Th2 type immune responses were reduced in IL-12p40 tg mice. The number of BCG granulomas and macrophage expressing inducible nitric oxide synthase were similar in IL-12p40 tg and non-transgenic mice. IL-12p40 tg mice were as resistant as non-transgenic mice to BCG and Mycobacterium tuberculosis infections as they could efficiently control bacillary growth. These data show that high amounts of IL-12p40 promotes IL-12p70 and IL-23 formation, but that does not affect T helper 1 type immune responses and granuloma function, thus leading to normal mycobacterial clearance in infected organs.
Resumo:
Hereditary angioedema is a disease which develops as a result of a deficiency or dysfonction of C1-inhibitor, a key regulator of the complement, coagulation and contact cascades, resulting among others in excessive release of bradykinin. This disease mortality rate is high in absence of immediate and effective treatment, in particular in presence of acute attacks of the upper respiratory tract (laryngeal edema). Until now only administration of a purified C1-inhibitor extract was effective against these symptoms. This paper aims to synthesise essentials knowledge concerning news drugs, in particular icatibant, a selective bradykinin B2- receptor antagonist whose use should be widened to the treatment of angioedema with ACE-inhibitors intolerance.
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Resumo:
Five functional mammalian facilitated hexose carriers (GLUTs) have been characterized by molecular cloning. By functional expression in heterologous systems, their specificity and affinity for different hexoses have been defined. There are three high-affinity transporters (GLUT-1, GLUT-3 and GLUT-4) and one low-affinity transporter (GLUT-2), and GLUT-5 is primarily a fructose carrier. Because their Michaelis constants (Km) are below the normal blood glucose concentration, the high-affinity transporters function at rates close to maximal velocity. Thus their level of cell surface expression greatly influences the rate of glucose uptake into the cells. In contrast, the rate of glucose uptake by GLUT-2 (Km = 17 mM) increases in parallel with the rise in blood glucose over the physiological concentration range. High-affinity transporters are found in almost every tissue, but their expression is higher in cells with high glycolytic activity. Glut-2, however, is found in tissues carrying large glucose fluxes, such as intestine, kidney, and liver. As an adaptive response to variations in metabolic conditions, the expression of these transporters is regulated by glucose and different hormones. Thus, because of their specific characteristics and regulated expression, the facilitated glucose transporters control fundamental aspects of glucose homeostasis. I review data pertaining to the structure and regulated expression of the glucose carriers present in intestine, kidney, and liver and discuss their role in the control of glucose flux into or out of these different tissues.
Resumo:
Although chemokines and their receptors were initially identified as regulators of cell trafficking during inflammation and immune response, they have emerged as crucial players in all stages of tumor development, primary growth, migration, angiogenesis, and establishment as metastases in distant target organs. Neuroectodermal tumors regroup neoplasms originating from the embryonic neural crest cells, which display clinical and biological similarities. These tumors are highly malignant and rapidly progressing diseases that disseminate to similar target organs such as bone marrow, bone, liver and lungs. There is increasing evidence that interaction of several chemokine receptors with corresponding chemokine ligands are implicated in the growth and invasive characteristics of these tumors. In this review we summarize the current knowledge on the role of CXCL12 chemokine and its CXCR4 and CXCR7 receptors in the progression and survival of neuroectodermal tumors, with particular emphasis on neuroblastoma, the most typical and enigmatic neuroectodermal childhood tumor.
Resumo:
Division and proliferation of dendritic cells (DCs) have been proposed to contribute to homeostasis and to prolonged antigen presentation. Whether abnormal proliferation of dendritic cells causes Langerhans cell histiocytosis (LCH) is a highly debated topic. Transgenic expression of simian virus 40 (SV40) T antigens in mature DCs allowed their transformation in vivo while maintaining their phenotype, function, and maturation capacity. The transformed cells were differentiated splenic CD8 alpha-positive conventional dendritic cells with increased Langerin expression. Their selective transformation was correlated with higher steady-state cycling compared with CD8 alpha-negative DCs in wild-type and transgenic mice. Mice developed a DC disease involving the spleen, liver, bone marrow, thymus, and mesenteric lymph node. Surprisingly, lesions displayed key immunohistologic features of Langerhans cell histiocytosis, including expression of Langerin and absence of the abnormal mitoses observed in Langerhans cell sarcomas. Our results demonstrate that a transgenic mouse model with striking similarities to aggressive forms of multisystem histiocytosis, such as the Letterer-Siwe syndrome, can be obtained by transformation of conventional DCs. These findings suggest that conventional DCs may cause some human multisystem LCH. They can reveal shared molecular pathways for human histiocytosis between humans and mice
Resumo:
Xenopus laevis oocytes were used to assay for trans-acting factors shown previously to be involved in the liver-specific regulation of the vitellogenin genes in vitro. To this end, crude liver nuclear extracts obtained from adult estrogen-induced Xenopus females were fractionated by heparin-Sepharose chromatography using successive elutions with 0.1, 0.35, 0.6, and 1.0 M KCl. When these four fractions were injected into oocytes, only the 0.6-M KCl protein fraction significantly stimulated mRNA synthesis from the endogenous B class vitellogenin genes. This same fraction induced estrogen-dependent in vitro transcription from the vitellogenin B1 promoter, suggesting that it contains at least a minimal set of basal transcription factors as well as two positive factors essential for vitellogenin in vitro transcription, i.e. the NF-I-like liver factor B and the estrogen receptor (ER). The presence of these two latter factors was determined by footprinting and gel retardation assays, respectively. In contrast, injection of an expression vector carrying the sequence encoding the ER was unable to activate transcription from the oocyte chromosomal vitellogenin genes. This suggests that the ER alone cannot overcome tissue-specific barriers and that one or several additional liver components participate in mediating tissue-specific expression of the vitellogenin genes. In this respect, we present evidence that the oocyte germinal vesicles contain an NF-I-like activity different from that found in hepatocytes of adult frogs. This observation might explain the lack of vitellogenin gene activation in oocytes injected with the ER cDNA only.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
De Gottardi A, Hilleret M-N, Gelez P, La Mura V, Guillaud O, Majno P, Hadengue A, Morel P, Zarski J-P, Fontana M, Moradpour D, Mentha G, Boillot O, Leroy V, Giostra E, Dumortier J. Injection drug use before and after liver transplantation: a retrospective multicenter analysis on incidence and outcome. Clin Transplant 2009 DOI: 10.1111/j.1399-0012.2009.01121.x.Background and aims: Injecting drug use (IDU) before and after liver transplantation (LT) is poorly described. The aim of this study was to quantify relapse and survival in this population and to describe the causes of mortality after LT. Methods: Past injection drug users were identified from the LT listing protocols from four centers in Switzerland and France. Data on survival and relapse were collected and used for uni- and multivariate analysis. Results: Between 1988 and 2006, we identified 59 patients with a past history of IDU. The mean age at transplantation was 42.4 yr and the majority of patients were men (84.7%). The indication for LT was for the vast majority viral cirrhosis accounting for 91.5% of cases, while alcoholic cirrhosis was 5.1%. There were 16.9% of patients who had a substitution therapy before and 6.8% who continued after LT. Two patients (3.4%) relapsed into IDU after LT and died at 18 and 41 months. The mean follow-up was 51 months. Overall survival was 84%, 66%, and 61% at 1, 5, and 10 yr after transplantation. Conclusions: Documented IDU was rare in liver transplanted patients. Past IDU was not associated with poorer survival after LT, and relapse after LT occurred in 3.4%.
Resumo:
Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.
Resumo:
Introduction La maladie « Non-Alcoholic Fatty Liver Disease ; NAFLD » et l'obésité provoque la résistance à l'insuline, un symptôme caractéristique du syndrome métabolique. La fréquence de ces maladies a augmenté de manière importante durant ces dernières décennies. Cette augmentation est étroitement liée à la surcharge énergétique dans notre culture modernisée. Pour combattre cette situation, des régimes riches en protéines semblent être bénéfiques, en particulier parce que l'acide aminé leucine stimule la satiété. Cependant l'effet des protéines alimentaires sur la stéatose hépatique reste peu connu. Résultats : Pour étudier cette question, nous avons nourri des souris C57B6/J (âgées de 5 semaines) avec un régime standard (10% kcal graisse, 20% kcal protéine), un régime riche en graisse (45% kcal graisse, 20% kcal protéine) ou un régime riche en graisse et enrichi en protéines (45% kcal graisse, 40% kcal protéine) pendant 10 semaines. Nous avons ainsi montré que l'addition de protéines au régime gras permet de prévenir la stéatose hépatique. Dans un deuxième temps nous avons testé si cet effet bénéfique des protéines alimentaires provient des acides aminés ramifiés (Branched-chain amino acids= BCAA : leucine, isoleucine, valine), composants majeurs de protéines alimentaires. Pour ce faire, nous avons ajouté un groupe de souris nourries au régime riche en graisses + BCAA (45% kcal graisse, 23% kcal protéine). Nos résultats montrent que l'addition des BCAA ne protège pas contre la stéatose hépatique, mais, au contraire, aggrave l'obésité et l'hyperinsulinémie. De manière intéressante, nous avons observé que la supplémentation en protéines ou en BCAA induit des effets différents sur la prise alimentaire et la dépense énergétique. Conclusion : Notre étude suggère clairement que les protéines alimentaires protègent contre l'obésité et la stéatose hépatique. Elle confirme également que les composants majeurs des protéines alimentaires (BCAA) n'exercent pas cet effet protecteur, mais qu'il aggrave le syndrome métabolique. Etant donné que l'ingestion importante et chronique de protéines alimentaires est délétère pour le rein, il serait très intéressant d'identifier les acides aminés spécifiques qui induiraient le même effet protecteur que les protéines alimentaires, mais sans perturber le fonctionnement rénal.
Resumo:
Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.