301 resultados para Kidney Targeting
Resumo:
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
Resumo:
Background: Optimal valganciclovir (VGC) dosage and duration for cytomegalovirus (CMV) prophylaxis in kidney transplant recipients remains controversial. This study aimed to determine GCV blood levels and efficacy/safety observed under low-dose oral VGC in kidney transplant recipients. Secondly, to quantify the variability of GCV blood levels, and its potential clinical impact. Methods: In this prospective study, each patient at risk for CMV undergoing kidney transplantation received low-dose VGC (450 mg qd) prophylaxis for 3 months, unless GFR was below 40 mL/min, in which case the dose was adapted to 450 mg every other day. GCV levels, at trough (Ctrough) and at peak (C3h) were measured monthly and CMV viremia was assessed during and after prophylaxis using real time quantitative Polymerase Chain Reaction. Adverse effects were recorded on each GCV sampling. Patients were followed up to one year after transplantation. Results: 38 kidney recipients (19 D+/R+, 11 D+/R-, 8 D-/R+) received 3-month VGC prophylaxis. Most patients (mean GFR of 59 mL/min) received 450 mg qd but the dose was reduced to 450 mg every other day in 6 patients with mean GFR of 22 mL/min. Average GCV C3h and Ctrough (regressed at 24h or 48h) were 3.9 mg/L (CV 33%, range: 1.3-8.2) and 0.4 mg/L (CV 111%, range 0.1-3.3). Population pharmacokinetic analysis showed a fair dispersion of the parameters mainly influenced by renal function. Despite this variability, patients remained aviremic during VGC prophylaxis. Neutropenia and thrombocytopenia (grade 2-4) were reported in 4% and 3% of patients respectively. During follow-up, asymptomatic CMV viremia was reported in 25% patients. One year after transplantation, 12% patients (all D+/R-) had developed a CMV disease, which was treated with a therapeutic 6-week course of oral VGC. Conclusion: Average GCV blood levels after oral administration of low-dose VGC in kidney transplant recipients were comparable to those previously reported with oral GCV prophylaxis, efficacious and well tolerated. Thus, a 3-month course of low-dose VGC is appropriate for the renal function of most kidney transplant recipients.
Resumo:
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).
Resumo:
Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.
Resumo:
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Resumo:
The detection of BK polyomavirus (BK virus, BKV) in kidney tissue is hampered by nonspecificity of antibodies suited to immunohistochemistry, and nonspecific background with in situ hybridization. The biotin-labeled DNA probe that is commercially available (Enzo Life Sciences, Inc.) shows good signal, but the intrinsic background in kidney tissue is high. We determined that the intrinsic background is due to endogenous biotin or biotin-binding activity in the renal tubular epithelium. Neither antibody blocking procedures nor an avidin/biotin block were entirely satisfactory for eliminating this background staining. We developed a digoxigenin-labeled DNA probe, and protocol, for detecting BK virus in formalin-fixed, paraffin embedded, kidney tissue obtained at autopsy. The hybridization signal is strong and there is no perceptible background staining. Eleven negative control kidneys all failed to hybridize. Conditions for low stringency hybridization may be employed, detecting both the related JC polyomavirus and BKV. Alternatively, high stringency hybridization conditions may be utilized, detecting BKV only. BK associated tubular necrosis is clearly demonstrated in two cases of BK nephritis.
Resumo:
Transepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. Mineralocorticoids modulate the expression of a number of proteins. Na+,K+-ATPase has been identified as an aldosterone-induced protein (Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier, 1982, J. Biol. Chem., 257:10338-10343). Using A6 cells (kidney of Xenopus laevis) grown on filters we demonstrated by Northern blot analysis that the induction of Na+,K+-ATPase was mainly mediated by a two- to fourfold accumulation of both alpha- and beta-subunit mRNAs. The specific competitor spironolactone decreased basal Na+ transport, Na+,K+-ATPase mRNA, and the relative rate of protein biosynthesis, and it blocked the response to aldosterone. Cycloheximide inhibited the aldosterone-dependent sodium transport but did not significantly affect the cytoplasmic accumulation of Na+,K+-ATPase mRNA induced by aldosterone.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Background: Cytomegalovirus (CMV) disease remains an important cause of morbidity after kidney transplantation and has been associated with acute rejection, graft loss and other indirect effects. A 3-month course of VGC prophylaxis reduces the incidence of CMV disease. However, little is known about the indirect effects of lateonset CMV disease after VGC prophylaxis. Objective: To evaluate the impact and indirect consequences of late-onset CMV disease after VGC prophylaxis in kidney transplant recipients. Methods: Retrospective analysis of 61 consecutive adult kidney transplant recipient with positive CMV serology (donor or recipient) who received VGC prophylaxis for 3 months and completed a follow-up of at least 2 years post-transplantation. Patients who developed CMV disease within 1 year after transplantation were compared to CMV disease-free patients for renal function (plasma creatinine values) at 1, 6, 12 and 24 months and for the incidence of graft loss, acute rejection, diabetes, cancer and opportunistic infections. Results: 8/61 (13%) patients developed CMV disease at a median of 131 days after transplantation (range: 98-220). The CMV incidence in D+/R- high risk patients was 6/18 (33%), while it was 2/43 (5%) in intermediate-risk patients (p < 0.01). All 8 patients were treated by oral valganciclovir (median 39 days; range: 19-119) with a complete resolution of CMV disease. As shown in the figure, there was no difference in creatinine values between the two groups at any time during follow-up. There was no graft loss, and the incidence of acute rejection, cancer and opportunistic infections did not differ between the two groups. The incidence of post-transplant diabetes was higher (38% vs 15%) in patients with CMV disease, but this difference was not significant (p = 0.4). Conclusions: An incidence of 13% of late-onset CMV disease was observed despite 3 months VGC prophylaxis. However, no indirect consequences were found. Moreover, therapy of CMV disease by oral VGC was effective and safe. Larger trials are needed to study whether late-onset CMV disease is associated with indirect consequences, as described with early-onset CMV.
Resumo:
OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.
Resumo:
IMPORTANCE OF THE FIELD: With some 220,000 new cases/year in the world, pancreatic adenocarcinoma is the fourth highest cause of death by cancers. Among newly diagnosed patients about 210,000 will die within 9 months following diagnosis. Therefore, effective adjuncts to current treatment strategies are necessary. Because embryological signaling pathways are upregulated in pancreatic adenocarcinoma, they represent potential targets for future therapies. AREAS COVERED IN THIS REVIEW: Our aim is to present the Notch pathway, and to describe its involvement in pancreatic pathophysiology/carcinogenesis. This pathway appeared as a prime target for pancreatic cancer therapy. In the light of the crosstalk of Notch with other survival/embryologic pathways, drugs affecting more than one pathway may have to be combined. WHAT THE READER WILL GAIN: Drugs against gamma-secretases could thus serve in cancer treatment and can be combined with drugs targeting survival pathways interplaying with Notch such as Hedgehog. TAKE HOME MESSAGE: Downregulation of Notch contributes to the inhibition and apoptosis of pancreatic cancer cells whereas Hedgehog inhibition will allow for enhanced delivery of drugs to the tumor. Both pathway inhibitors appear to have synergistic effects for future therapeutics for pancreatic adenocarcinoma, once safety issues of compounds are overcome.