199 resultados para Intercellular signaling peptides and proteins
Resumo:
OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.
Resumo:
FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.
Resumo:
One hypothesis for the maintenance of genetic variation states that alternative genotypes are adapted to different environmental conditions (i.e., genotype-by-environment interaction GxE) that vary in space and time. Although GxE has been demonstrated for morphological traits, little evidence has been given whether these GxE are associated with traits used as signal in mate choice. In three wild bird species, we investigated whether the degree of melanin-based coloration, a heritable trait, covaries with nestling growth rate in rich and poor environments. Variation in the degree of reddish-brown phaeomelanism is pronounced in the barn owl (Tyto alba) and tawny owl (Strix aluco), and variation in black eumelanism in the barn owl and Alpine swift (Apus melba). Melanin-based coloration has been shown to be a criterion in mate choice in the barn owl. We cross-fostered hatchlings to test whether nestlings sired by parents displaying melanin-based colorations to different extent exhibit alternative growth trajectories when raised by foster parents in poor (experimentally enlarged broods) and rich (experimentally reduced broods) environments. With respect to phaeomelanism, barn owl and tawny owl offspring sired by redder parents grew more rapidly in body mass only in experimentally reduced broods. With respect to eumelanism, Alpine swift offspring of darker fathers grew their wings more rapidly only in experimentally enlarged broods, a difference that was not detected in reduced broods. These interactions between parental melanism and offspring growth rate indicate that individuals display substantial plasticity in response to the rearing environment which is associated with the degree of melanism: at least with respect to nestling growth, phaeomelanic and eumelanic individuals are best adapted to rich and poor environments, respectively. It now remains to be investigated why eumelanism and phaeomelanism have a different signaling function and what the lifelong consequences of these melanism-dependent allocation strategies are. This is important to fully appraise the role played by environmental heterogeneity in maintaining variation in the degree of melanin-based coloration.
Resumo:
The intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown. Here we found that LL37 very efficiently transports self-DNA into monocytes, leading the production of type I IFNs in a Toll-like receptor-independent manner. This type I IFN induction was mediated by double-stranded B form DNA, regardless of its sequence, CpG content, or methylation status, and required signaling through the adaptor protein STING and TBK1 kinase, indicating the involvement of cytosolic DNA sensors. Thus, our study identifies a novel link between the antimicrobial peptides and type I IFN responses involving DNA-dependent activation of cytosolic sensors in monocytes.
Resumo:
Odor detection and discrimination by olfactory systems in vertebrates and invertebrates depend both on the selective expression of individual olfactory receptor genes in subpopulations of olfactory sensory neurons, and on the targeting of the encoded proteins to the exposed, ciliated endings of sensory dendrites. Techniques to visualize the expression and localization of olfactory receptor gene products in vivo have been essential to reveal the molecular logic of peripheral odor coding and to permit investigation of the developmental and cellular neurobiology of this sensory system. Here, we describe methods for detection of olfactory receptor transcripts and proteins in the antennal olfactory organ of the fruit fly, Drosophila melanogaster, an important genetic model organism. We include protocols both for antennal cryosections and whole-mount antennae. These methods can be adapted for detection of receptor expression in other olfactory and gustatory tissues in Drosophila, as well as in the chemosensory systems of other insects.
Resumo:
RESUME : Les dermatophytes sont les agents infectieux les plus fréquents responsables de la plupart des mycoses superficielles chez les humains et chez les animaux. Ces infections, dermatophytoses, également appelées tineas ou teignes, sont fréquentes et causent des problèmes de santé publique au niveau mondial. La capacité d'envahir et de progresser au sein des structures kératinisées est probablement liée à la sécrétion de différentes enzymes kératinolytiques, qui sont considérées comme la principale caractéristique liée à la pathogénicité de ces champignons. L'objectif de ma thèse a été premièrement de progresser dans l'identification et la caractérisation des nouvelles protéines sécrétées, afin de mieux comprendre a) la capacité globale des dermatophytes à envahir les structures kératinisées, et b) les différences dans la virulence et la spécificité d'hôte que présentent les espèces étudiées .Pour progresser dans l'identification et la caractérisation de ces nouvelles protéines, les secretomes de six espèces de dermatophytes (Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii et Trichophyton tonsurans) ont été étudiés. Bien qu'il y ait un niveau globalement élevé de similitude entre les protéases sécrétées, les différentes espèces de dermatophytes sécrètent des profiles protéiques distincts lorsqu'elles sont cultivées dans les mêmes conditions de culture, et donc une signature spécifique a pu être associé à chaque espèce. Ces profiles ont été un outil avantageux pour identifier et cartographier les protéines orthologues aux six espèces et ont aussi permit la discrimination d'espèces très proches comme T. tonsurans et T. equinum qui ne peuvent pas être différenciées par l'ADN ribosomal. Ce travail également présente ce que l'on croit être la première identification global des protéines sécrétées par les dermatophytes dans des conditions de culture que incitent l'activité protéolytique extracellulaire. Ce catalogue de protéines, comprenant des endo- and exo- proteases, autres hydrolases, oxydoreductases et des protéines avec fonction inconnue, représente probablement le spectre d'enzymes qui permettent la dégradation des tissus kératinisés en composés qui peuvent être assimilés par le champignon. Les résultats suggèrent qu'un changement écologique pourrait être associé à une expression différentielle des gènes codant les protéines sécrétées, en particulier, les protéases, plutôt qu'à des divergences génétiques au niveau des gènes codant les protéines orthologues. Une sécrétion différentielle des protéines par les dermatophytes pourrait également être responsable de la variabilité inflammatoire qui causent ces agents infectieux chez les différents hôtes. Par conséquent, les protéines identifiées ici sont également importantes pour faire la lumière sur la réponse immunitaire de l'hôte au cours du processus infectieux. SUMMARY : Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Dermatophytoses, also called tineas or ringworm, are frequent and cause public health problems worldwide. The secretion of different keratinolytic enzymes is believed to be a key pathogenicity-related characteristic of these fungi. The aim of this work was first to progress in the identification and characterization of novel secreted proteins, in order to better understand a) the overall capability of dermatophytes to invade keratinised structures, and b) differences in virulence and host-specificity of the investigated species. To progress in the identification and characterization of novel proteins, the secretomes from Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii and Trichophyton tonsurans were studied. Although there is a high global level of similarity among the secreted proteases, different dermatophyte species produce distinct patterns of proteins when grown in the same culture medium, and so a specific signature could be associated to each species. These patterns were useful to identify and map orthologous proteins among the six species, as well as to discriminate the closely related species T. tonsurans and T. equinum, which cannot be differentiated by ribosomal DNA. This work also presents the first in-depth identification of the major proteins secreted by dermatophytes growing under conditions promoting extracellular proteolytic activity. This catalogue of proteins, which include several endo- and exo- proteases, other hydrolases, oxydoreductases, and proteins of unknown function, probably represents the spectrum of enzymes that allow the degradation of keratinized tissues into compounds which can be assimilated by the fungus. The results suggest that ecological switching could be related to a differential expression of genes encoding secreted proteins, particularly, proteases, rather than genetic divergences of the genes encoding orthologous proteins. Differential secretion of proteins by Dermatophyte species could also be responsible for the variable inflammation caused by the infectious agent within the host. Therefore, the proteins here identified are also important to shed light into the immune response of the host during the infection process.
Resumo:
Clinical trials have shown that strong tumor antigen-specific CD8 T-cell responses are difficult to induce but can be achieved for T-cells specific for melanoma differentiation antigens, upon repetitive vaccination with stable emulsions prepared with synthetic peptides and incomplete Freund's adjuvant. Here, we show in four melanoma patients that ex vivo detectable T-cells and thus strong T-cell responses can also be induced against the more universal cancer-testis antigens NY-ESO-1 and Mage-A10. Interestingly, all patients had ex vivo detectable T-cell responses against multiple antigens after serial vaccinations with three peptides emulsified in incomplete Freund's adjuvant. Antigen-specific T-cells displayed an activated phenotype and secreted IFNgamma. The robust immune responses provide a solid basis for further development of human T-cell vaccination.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
An animal's survival strongly depends on its ability to maintain homeostasis in response to the changing quality of its external and internal environment. This is achieved through intracellular and intercellular communication within and among different tissues. One of the organ systems that plays a major role in this communication and the maintenance of homeostasis is the nervous system. Here we highlight different aspects of the neuronal inputs and outputs of pathways that affect aging and longevity. Accordingly, we discuss how sensory inputs influence homeostasis and lifespan through the modulation of different types of neuronal signals, which reflects the complexity of the environmental cues that affect physiology. We also describe feedback, compensatory, and feed-forward mechanisms in these longevity-modulating pathways that are necessary for homeostasis. Finally, we consider the temporal requirements for these neuronal processes and the potential role of natural genetic variation in shaping the neurobiology of aging.
Resumo:
Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. METHODS: This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with (131)I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with (177)Lu-peptides; and case 3, hepatocellular carcinoma treated with (90)Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, D(VD), calculated assuming uniform density, was corrected for density, giving D(VDd). The average 3D-RD absorbed dose values, D(3DRD), were compared with D(VD) and D(VDd), using the relative difference Δ(VD/3DRD). At the voxel level, density-binned Δ(VD/3DRD) and Δ(VDd/3DRD) were plotted against ρ and fitted with a linear regression. RESULTS: The D(VD) calculations showed a good agreement with D(3DRD). Δ(VD/3DRD) was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the Δ(VD/3DRD) range was 0%-14% for cases 1 and 2, and -3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged Δ(VD/3DRD) and density, ρ: case 1 (Δ = -0.56ρ + 0.62, R(2) = 0.93), case 2 (Δ = -0.91ρ + 0.96, R(2) = 0.99), and case 3 (Δ = -0.69ρ + 0.72, R(2) = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (Δ(VDd/3DRD) < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the Δ(VDd/3DRD) range decreased for the 3 clinical cases (case 1, -1% to 4%; case 2, -0.5% to 1.5%, and -1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ - 0.38, R(2) = 0.88) although the slope in case 1 was less pronounced. CONCLUSION: This study shows a small influence of TDH in the abdominal region for 3 representative clinical cases. A simple density-correction method was proposed and improved the comparison in the absorbed dose calculations when using our voxel S value implementation.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Resumo:
A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.
Resumo:
The treatment of stage IV melanoma has witnessed a very impressive pace of innovation in recent years, to a point where the management of these patients has very little in common to what was standard practice 5 years ago. If the gain in overall survival, the high response rates or the induction of a significant fraction of long survivors are all very exciting news for our patients and their families, the path that led to these discoveries is as important. Rather than empirical, the development of these new strategies has been extremely rational, based on state-of-the-art basic biology and immunology, exemplary translational research and, finally, hypothesis-driven targeted trials that led to rapid approval. In this review, we will cover all the new targeted therapies that have emerged as the results of these translational programs, focusing mainly on signaling pathway- and immune checkpoint-targeted therapies. Taken collectively, these new developments set the bar for a new paradigm in future translational and clinical research in both melanoma as well as other tumor types.
Resumo:
In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.
Resumo:
Six of 7 FXYD proteins have been shown to be tissue-specific modulators of Na,K-ATPase. In this study, we have identified two splice variants of human FXYD3, or Mat-8, in CaCo-2 cells. Short human FXYD3 has 72% sequence identity with mouse FXYD3, whereas long human FXYD3 is identical to short human FXYD3 but has a 26-amino acid insertion after the transmembrane domain. Short and long human FXYD3 RNAs and proteins are differentially expressed during differentiation of CaCo-2 cells. Long human FXYD3 is mainly expressed in nondifferentiated cells and short human FXYD3 in differentiated cells and both FXYD3 variants can be co-immunoprecipitated with a Na,K-ATPase antibody. In contrast to mouse FXYD3, which has two transmembrane domains for lack of cleavage of the signal peptide, human FXYD3 has a cleavable signal peptide and adopts a type I topology. After co-expression in Xenopus oocytes, both human FXYD3 variants associate stably only with Na,K-ATPase isozymes but not with H,K-ATPase or Ca-ATPase. Similar to mouse FXYD3, short human FXYD3 decreases the apparent K(+) and Na(+) affinity of Na,K-ATPase over a large range of membrane potentials. On the other hand, long human FXYD3 decreases the apparent K(+) affinity only at slightly negative and positive membrane potentials and increases the apparent Na(+) affinity of Na,K-ATPase. Finally, both short and long human FXYD3 induce a hyperpolarization activated current, similar to that induced by mouse FXYD3. Thus, we have characterized two human FXYD3 isoforms that are differentially expressed in differentiated and non-differentiated cells and show different functional properties.