340 resultados para Inhibitor discontinuation syndrome
Resumo:
Immune dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome is a unique example of primary immunodeficiency characterized by autoimmune manifestations due to defective regulatory T (Treg) cells, in the presence of FOXP3 mutations. However, autoimmune symptoms phenotypically resembling IPEX often occur in the absence of detectable FOXP3 mutations. The cause of this "IPEX-like" syndrome presently remains unclear. To investigate whether a defect in Treg cells sustains the immunological dysregulation in IPEX-like patients, we measured the amount of peripheral Treg cells within the CD3(+) T cells by analysing demethylation of the Treg cell-Specific-Demethylated-Region (TSDR) in the FOXP3 locus and demethylation of the T cell-Specific-Demethylated-Region (TLSDR) in the CD3 locus, highly specific markers for stable Treg cells and overall T cells, respectively. TSDR demethylation analysis, alone or normalized for the total T cells, showed that the amount of peripheral Treg cells in a cohort of IPEX-like patients was significantly reduced, as compared to both healthy subjects and unrelated disease controls. This reduction could not be displayed by flow cytometric analysis, showing highly variable percentages of FOXP3(+) and CD25(+)FOXP3(+) T cells. These data provide evidence that a quantitative defect of Treg cells could be considered a common biological hallmark of IPEX-like syndrome. Since Treg cell suppressive function was not impaired, we propose that this reduction per se could sustain autoimmunity.
Resumo:
A 57-year-old male with no family history was diagnosed with semantic dementia. He also showed some unusual cognitive features such as episodic memory and executive dysfunctions, spatial disorientation, and dyscalculia. Rapidly progressive cognitive and physical decline occurred. About 1.5 years later, he developed clinical features of a corticobasal syndrome. He died at the age of 60. Brain autopsy revealed numerous 4R-tau-positive lesions in the frontal, parietal and temporal lobes, basal ganglia, and brainstem. Neuronal loss was severe in the temporal cortex. Such association of semantic dementia with tauopathy and corticobasal syndrome is highly unusual. These findings are discussed in the light of current knowledge about frontotemporal lobar degeneration.
Resumo:
We report three unrelated patients with Kenny syndrome. Clinical symptoms included severe dwarfism, with internal cortical thickening and medullary stenosis of the tubular bones, normal bone age, macrocephaly, absent diploic space, delayed closure of the anterior fontanel, and normal intelligence; two of the patients had hyperopia and papillary edema. The patients also had episodic hypocalcemic tetany and low serum levels of magnesium. In two patients the diagnosis of idiopathic hypoparathyroidism was established on the basis of undetectable serum parathyroid hormone (PTH) levels (N- and C-terminal RIAs); one of these had normal urinary cyclic adenosine monophosphate (cAMP) response to exogenous PTH. Circulating calcitonin was undetectable in either patient. In a third patient, who had abnormal body proportions, serum levels of PTH were increased in an RIA detecting predominantly intact PTH (N-RIA) and undetectable in another RIA recognizing carboxy-terminal fragments (C-RIA). Administration of PTH promptly increased urinary cAMP excretion. In this patient, serum levels of calcitonin were increased, whereas values for 25-OHD and 1,25(OH)2D were normal.
Resumo:
This study evaluated the prenatal diagnosis of Turner syndrome by ultrasound examination in an unselected population from all over Europe. Data from 19 congenital malformation registries from 11 European countries were analyzed. Turner syndrome was diagnosed in 125 cases (7.2%) in a total of 1,738 chromosome abnormalities. Sixty-seven percent of cases were detected prenatally by ultrasound examination due to the presence of congenital defects. The most frequent anomalies were cystic hygroma (59.5%) and hydrops fetalis (19%). The most frequent karyotype was 45,X (81.6%) followed by different types of mosaicism (16.8%). Significant differences in congenital defects (P = 0.0003) were observed between 45,X karyotypes and 45,X mosaicism cases. Prenatal counseling for 45,X mosaicism should take into account the expectation of a milder phenotype. In 78.6% of cases diagnosed by ultrasound examination due to congenital anomalies, the pregnancy was terminated. Prenatal detection of Turner syndrome by ultrasound examination was high in this unselected population.
Resumo:
Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue characterized by bone fragility and alteration in synthesis and posttranslational modification of type I collagen. Autosomal dominant OI is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Bruck syndrome is a recessive disorder featuring congenital contractures in addition to bone fragility; Bruck syndrome type 2 is caused by mutations in PLOD2 encoding collagen lysyl hydroxylase, whereas Bruck syndrome type 1 has been mapped to chromosome 17, with evidence suggesting region 17p12, but the gene has remained elusive so far. Recently, the molecular spectrum of OI has been expanded with the description of the basis of a unique posttranslational modification of type I procollagen, that is, 3-prolyl-hydroxylation. Three proteins, cartilage-associated protein (CRTAP), prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene), and the prolyl cis-trans isomerase cyclophilin-B (PPIB), form a complex that is required for fibrillar collagen 3-prolyl-hydroxylation, and mutations in each gene have been shown to cause recessive forms of OI. Since then, an additional putative collagen chaperone complex, composed of FKBP10 (also known as FKBP65) and SERPINH1 (also known as HSP47), also has been shown to be mutated in recessive OI. Here we describe five families with OI-like bone fragility in association with congenital contractures who all had FKBP10 mutations. Therefore, we conclude that FKBP10 mutations are a cause of recessive osteogenesis imperfecta and Bruck syndrome, possibly Bruck syndrome Type 1 since the location on chromosome 17 has not been definitely localized.
Resumo:
MDL 100,240, a dual inhibitor of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), was administered intravenously to two panels of four healthy males in a four-period, dose-increasing (0, 1.56, 6.25, and 25 mg, and 0, 3.13, 12.5, and 50 mg, respectively) double-blind, placebo-controlled study. Plasma ACE activity and blood-pressure response to exogenous angiotensin I and angiotensin II i.v. challenges and safety and tolerance were assessed over a 24-h period. MDL 100,240 induced a rapid, dose-related, and sustained inhibition of ACE (>70% over 24 h at doses > or =12.5 mg). The time integral of ACE inhibition was related to the dose but with near-maximal values already attained at doses > or =12.5 mg. Systolic and diastolic blood-pressure responses to exogenous angiotensin I challenges were inhibited in a dose-dependent fashion, whereas the effects of angiotensin II remained unaffected. Mean supine blood pressure decreased transiently (3 h) at doses > or =3.125 mg and < or =24 h with the 25- and 50-mg doses, but not significantly. MDL 100,240 was well tolerated. In healthy subjects, MDL 100,240 exerts a dose-dependent and long-lasting ACE-blocking activity, also expressed by the inhibition of the pressor responses to exogenous angiotensin I challenges. The baroreceptor reflex, assessed by the response to exogenous angiotensin II challenge, remains unaltered.
Resumo:
Background: Targeted therapies for metastatic renal cell carcinoma (RCC), including mammalian target of rapamycin (mTOR) inhibitors and small-molecule multikinase inhibitors, have produced clinical effects. However, most patients acquire resistance over time. Thus, new therapeutic strategies need to be developed. Here, we evaluated the effect of the dual PI3K/mTOR inhibitor NVP-BEZ235, in combination with the multikinase inhibitor sorafenib on renal cancer cell proliferation and survival in vitro as well as on tumor growth in vivo.Methods: The renal carcinoma cell lines 786-0 and Caki-1 were treated with NVP-BEZ235 or sorafenib, either alone or in combination. Tumor cell proliferation and apoptosis were investigated in vitro. The anticancer efficacy of NVP-BEZ235 alone, or in combination with sorafenib, was also evaluated on RCC xenografts in nude mice.Results: Treatment of 786-0 and Caki-1 cells with NVP-BEZ235 or sorafenib resulted in reduced tumor cell proliferation and increased tumor cell apoptosis in vitro. The combination of NVP-BEZ235 and sorafenib was more effective than each compound alone. Similarly, in vivo, NVP-BEZ235 or sorafenib reduced the growth of xenografts generated from 786-0 or Caki-1 cells. The antitumor efficacy of NVP-BEZ235 in combination with sorafenib was superior to NVP-BEZ235 or sorafenib alone.Conclusions: Our findings indicate that the simultaneous use of NVP-BEZ235 and sorafenib has greater antitumor benefit compared to either drug alone and thus provides a treatment strategy in RCC.
Resumo:
Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences.
Resumo:
PURPOSE: To report the case of identical dichorionic diamniotic female twins with unilateral retinoblastoma in 13q deletion syndrome. METHODS: Clinical and ophthalmoscopic evaluation, combination of multiple ligation-dependent probe amplification, array-comparative genomic hybridization analyses, and magnetic resonance imaging were performed. RESULTS: Peculiar facial features, marked hypotonia, gastroesophageal reflux, interatrial septal defect with left to right shunt and light dilatation of right chambers, 5th finger hypoplasia, 3rd-5th toes clinodactyly, 2nd toe overlapped to 3rd toe, and cutis marmorata were found. Ophthalmoscopic evaluation revealed unilateral retinoblastoma in both girls. Magnetic resonance imaging detected corpus callosum hypoplasia in both twins. A 34.4-Mb deletion involving bands 13q13.2-q21.33 and including the RB1 gene was identified in both twins. The deletion was not present in the DNA of their parents and older brother. CONCLUSIONS: Dysmorphic features in children must be always suspicious of 13q deletion syndrome and a short ophthalmoscopic follow-up is necessary to detect the presence of a retinoblastoma.
Resumo:
Background. Sevelamer is a phosphate-binder used effectively for the treatment of hyperphosphatemia in patients treated with dialysis. Objectives. To describe the safety of sevelamer in children with hyperphosphatemia secondary to tumor lysis syndrome and the serum phosphate concentrations observed following its administration. Procedure. A retrospective chart review of all children with leukemia/lymphoma diagnosed between November 2002 and April 2004 who received sevelamer during their initial admission was conducted. We monitored the effects of sevelamer on serum phosphate concentration, calcium/phosphate product and renal function at hours 24, 48, and 72 from sevelamer initiation. Results. Thirteen patients received sevelamer during the Study period. Their median age was 13 years (range 2.7-17.9) and eight were boys. Nine children had acute lymphoblastic leukemia, one had acute myeloid leukemia and 3 had non-Hodgkin's lymphoma. The most frequently used dose of sevelamer was 400 mg orally twice daily. The median duration of sevelamer therapy was 2 days (range 1 -7). Two children were excluded from the efficacy analysis due to concurrent use of dialysis. Mean serum phosphate levels decreased after sevelamer administration, in eleven patients, from a baseline 2.2 mmol/L +/- 0.4 (95% Cl, 1.7-3.1) to 1.1 mmol/L +/- 0.2 at hour 72 (95%Cl, 0.6-1.5). The only toxicity attributed to sevelamer was mild vomiting in three patients. Conclusions. Sevelamer appears to be effective and tolerable for the treatment of hyperphosphatemia associated with tumor lysis syndrome.
Resumo:
This study assessed the pharmacodynamic and pharmacokinetic effects of the interaction between the selective norepinephrine (NE) transporter inhibitor reboxetine and 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in 16 healthy subjects. The study used a double-blind, placebo-controlled crossover design. Reboxetine reduced the effects of MDMA including elevations in plasma levels of NE, increases in blood pressure and heart rate, subjective drug high, stimulation, and emotional excitation. These effects were evident despite an increase in the concentrations of MDMA and its active metabolite 3,4-methylenedioxyamphetamine (MDA) in plasma. The results demonstrate that transporter-mediated NE release has a critical role in the cardiovascular and stimulant-like effects of MDMA in humans.
Resumo:
Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.