203 resultados para HIGHLY REACTIVE ORGANOLANTHANIDES
Resumo:
BACKGROUND: Selective publication of studies, which is commonly called publication bias, is widely recognized. Over the years a new nomenclature for other types of bias related to non-publication or distortion related to the dissemination of research findings has been developed. However, several of these different biases are often still summarized by the term 'publication bias'. METHODS/DESIGN: As part of the OPEN Project (To Overcome failure to Publish nEgative fiNdings) we will conduct a systematic review with the following objectives:- To systematically review highly cited articles that focus on non-publication of studies and to present the various definitions of biases related to the dissemination of research findings contained in the articles identified.- To develop and discuss a new framework on nomenclature of various aspects of distortion in the dissemination process that leads to public availability of research findings in an international group of experts in the context of the OPEN Project.We will systematically search Web of Knowledge for highly cited articles that provide a definition of biases related to the dissemination of research findings. A specifically designed data extraction form will be developed and pilot-tested. Working in teams of two, we will independently extract relevant information from each eligible article.For the development of a new framework we will construct an initial table listing different levels and different hazards en route to making research findings public. An international group of experts will iteratively review the table and reflect on its content until no new insights emerge and consensus has been reached. DISCUSSION: Results are expected to be publicly available in mid-2013. This systematic review together with the results of other systematic reviews of the OPEN project will serve as a basis for the development of future policies and guidelines regarding the assessment and prevention of publication bias.
Resumo:
The Liesberg Beds form the transition between the lower Oxfordian dark coloured marls (Renggeri Member and the Terrain a Chailles Member) and the middle Oxfordian reefal limestones (St-Ursanne Formation). Both lithofacies and biofacies are diverse and evolve rapidly up-section. Stable isotope studies of whole-rock samples are therefore excluded. In search for a convenient isotopic marker, we measured carbon isotope compositions of several fossil groups and chose crinoid stems of Millericrinus spp and echinoid spines of Paracidaris spp because of their abundance throughout the section and the small variations of delta(13)C within one fossil and between fossils from the same stratigraphic level. The delta(13)C values of echinoderms largely reflect earliest diagenetic conditions at the seawatersediment interface. The porous stereome structure secreted of high Mg-calcite by echinoderms has a high reactive surface/volume ratio, which triggers the precipitation of very early syntaxial cements. In the four studied sections reproducible carbon isotope shifts were observed both for Millericrinus spp stems and Paracidaris spp spines. A negative delta(13)C shift of 1-1.5 parts per thousand was observed near the base of the section, just above the transition from Terrain a Chailles Member, where the first corals occur. In the middle and upper part of the four sections, characterised by a stepwise increase of corals and the macrofossils, a positive delta(13)C Shift of about 2 parts per thousand was observed. Despite the highly variable lithologic composition of the Liesberg Beds;Member, carbon isotope shifts seem to be consistent and warrant an interpretation as an original signal, controlled by the isotopic composition of dissolved carbonic acid in seawater. We explain the heavy delta(13)C values (approximate to 2-2.3 parts per thousand) in the lower Liesberg Beds as a transition from an oxygen-limited environment (Terrain a Chailles Member) to the Liesberg Beds Member. The lowest delta(13)C values (approximate to 1-1.5 parts per thousand) correspond to a large input of dissolved nutrients to the platform under oxidizing conditions. The ensuing positive shift (between 2.5 and 3.5 parts per thousand), however, seems to correspond to a general trend of opening up of the platform and connection to open marine waters. Positive delta(13)C values in the upper Liesberg Beds is interpreted as a result of important accelareted extraction of organic carbon from the ocean reservoir, that occurred possibly during periods of warm and humid climate.
Resumo:
Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation.
Resumo:
BACKGROUND: Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS: Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS: Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION: Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.
Resumo:
A collaborative study on Raman spectroscopy and microspectrophotometry (MSP) was carried out by members of the ENFSI (European Network of Forensic Science Institutes) European Fibres Group (EFG) on different dyed cotton fabrics. The detection limits of the two methods were tested on two cotton sets with a dye concentration ranging from 0.5 to 0.005% (w/w). This survey shows that it is possible to detect the presence of dye in fibres with concentrations below that detectable by the traditional methods of light microscopy and microspectrophotometry (MSP). The MSP detection limit for the dyes used in this study was found to be a concentration of 0.5% (w/w). At this concentration, the fibres appear colourless with light microscopy. Raman spectroscopy clearly shows a higher potential to detect concentrations of dyes as low as 0.05% for the yellow dye RY145 and 0.005% for the blue dye RB221. This detection limit was found to depend both on the chemical composition of the dye itself and on the analytical conditions, particularly the laser wavelength. Furthermore, analysis of binary mixtures of dyes showed that while the minor dye was detected at 1.5% (w/w) (30% of the total dye concentration) using microspectrophotometry, it was detected at a level as low as 0.05% (w/w) (10% of the total dye concentration) using Raman spectroscopy. This work also highlights the importance of a flexible Raman instrument equipped with several lasers at different wavelengths for the analysis of dyed fibres. The operator and the set up of the analytical conditions are also of prime importance in order to obtain high quality spectra. Changing the laser wavelength is important to detect different dyes in a mixture.
Resumo:
Flow structures above vegetation canopies have received much attention within terrestrial and aquatic literature. This research has led to a good process understanding of mean and turbulent canopy flow structure. However, much of this research has focused on rigid or semi-rigid vegetation with relatively simple morphology. Aquatic macrophytes differ from this form, exhibiting more complex morphologies, predominantly horizontal posture in the flow and a different force balance. While some recent studies have investigated such canopies, there is still the need to examine the relevance and applicability of general canopy layer theory to these types of vegetation. Here, we report on a range of numerical experiments, using both semi-rigid and highly flexible canopies. The results for the semi-rigid canopies support existing canopy layer theory. However, for the highly flexible vegetation, the flow pattern is much more complex and suggests that a new canopy model may be required.
Resumo:
PURPOSE: To identify risk factors associated with mortality in patients with severe community-acquired pneumonia (CAP) caused by S. pneumoniae who require intensive care unit (ICU) management, and to assess the prognostic values of these risk factors at the time of admission. METHODS: Retrospective analysis of all consecutive patients with CAP caused by S. pneumoniae who were admitted to the 32-bed medico-surgical ICU of a community and referral university hospital between 2002 and 2011. Univariate and multivariate analyses were performed on variables available at admission. RESULTS: Among the 77 adult patients with severe CAP caused by S. pneumoniae who required ICU management, 12 patients died (observed mortality rate 15.6 %). Univariate analysis indicated that septic shock and low C-reactive protein (CRP) values at admission were associated with an increased risk of death. In a multivariate model, after adjustment for age and gender, septic shock [odds ratio (OR), confidence interval 95 %; 4.96, 1.11-22.25; p = 0.036], and CRP (OR 0.99, 0.98-0.99 p = 0.034) remained significantly associated with death. Finally, we assessed the discriminative ability of CRP to predict mortality by computing its receiver operating characteristic curve. The CRP value cut-off for the best sensitivity and specificity was 169.5 mg/L to predict hospital mortality with an area under the curve of 0.72 (0.55-0.89). CONCLUSIONS: The mortality of patients with S. pneumoniae CAP requiring ICU management was much lower than predicted by severity scores. The presence of septic shock and a CRP value at admission <169.5 mg/L predicted a fatal outcome.
Resumo:
Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.
Resumo:
Brake wear dust is a significant component of traffic emissions and has been linked to adverse health effects. Previous research found a strong oxidative stress response in cells exposed to freshly generated brake wear dust. We characterized aged dust collected from passenger vehicles, using microscopy and elemental analyses. Reactive oxygen species (ROS) generation was measured with acellular and cellular assays using 2′7-dichlorodihydrofluorescein dye. Microscopy analyses revealed samples to be heterogeneous particle mixtures with few nanoparticles detected. Several metals, primarily iron and copper, were identified. High oxygen concentrations suggested that the elements were oxidized. ROS were detected in the cell-free fluorescent test, while exposed cells were not dramatically activated by the concentrations used. The fact that aged brake wear samples have lower oxidative stress potential than fresh ones may relate to the highly oxidized or aged state of these particles, as well as their larger size and smaller reactive surface area.
Resumo:
The antibiotic pipeline continues to diminish and the majority of the public remains unaware of this critical situation. The cause of the decline of antibiotic development is multifactorial and currently most ICUs are confronted with the challenge of multidrug-resistant organisms. Antimicrobial multidrug resistance is expanding all over the world, with extreme and pandrug resistance being increasingly encountered, especially in healthcare-associated infections in large highly specialized hospitals. Antibiotic stewardship for critically ill patients translated into the implementation of specific guidelines, largely promoted by the Surviving Sepsis Campaign, targeted at education to optimize choice, dosage, and duration of antibiotics in order to improve outcomes and reduce the development of resistance. Inappropriate antimicrobial therapy, meaning the selection of an antibiotic to which the causative pathogen is resistant, is a consistent predictor of poor outcomes in septic patients. Therefore, pharmacokinetically/pharmacodynamically optimized dosing regimens should be given to all patients empirically and, once the pathogen and susceptibility are known, local stewardship practices may be employed on the basis of clinical response to redefine an appropriate regimen for the patient. This review will focus on the most severely ill patients, for whom substantial progress in organ support along with diagnostic and therapeutic strategies markedly increased the risk of nosocomial infections.
Resumo:
Adult-onset Still's disease is a rare and difficult to diagnose multisystemic disorder considered as a multigenic autoinflammatory syndrome. Its immunopathogenesis seems to be at the crossroads between inflammasomopathies and hemophagocytic lymphohistiocytosis, the most severe manifestation of the disease. According to recent insights in the pathophysiology and thanks to cohort studies and therapeutic trials, two phenotypes of adult-onset Still's disease may be distinguished: a systemic pattern, initially highly symptomatic and with a higher risk to exhibit life-threatening complications such as reactive hemophagocytic lymphohistiocytosis, where interleukin-1 blockade seems to be very effective, a chronic articular pattern, more indolent with arthritis in the foreground and less severe systemic manifestations, which would threat functional outcome and where interleukin-6 blockade seems to be more effective. This review focuses on these data.
Resumo:
BACKGROUND: Lack of electroencephalography (EEG) background reactivity during therapeutic hypothermia (TH) has been associated with poor outcome in post-anoxic comatose patients. However, decision on intensive care withdrawal is based on normothermic (NT) evaluations. This study aims at exploring whether patients showing recovery of EEG reactivity in NT after a non-reactive EEG in TH differ from those remaining non-reactive. METHODS: Patients with non-reactive EEG during TH were identified from our prospective registry of consecutive comatose adults admitted after successful resuscitation from CA between April 2009 and June 2014. Variables including neurological examination, serum neuron-specific enolase (NSE), procalcitonin, and EEG features were compared regarding impact on functional outcome at 3 months. RESULTS: Seventy-two of 197 patients (37 %) had a non-reactive EEG background during TH with thirteen (18 %) evolving towards reactivity in NT. Compared to those remaining non-reactive (n = 59), they showed significantly better recovery of brainstem reflexes (p < 0.001), better motor responses (p < 0.001), transitory consciousness improvement (p = 0.008), and a tendency toward lower NSE (p = 0.067). One patient recovering EEG reactivity survived with good functional outcome at 3 months. CONCLUSIONS: Recovery of EEG reactivity from TH to NT seems to distinguish two patients' subgroups regarding early neurological assessment and transitory consciousness improvement, corroborating the role of EEG in providing information about cerebral functions. Understanding these dynamic changes encourages maintenance of intensive support in selected patients even after a non-reactive EEG background in TH, as a small subgroup may indeed recover with good functional outcome.
Resumo:
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.