434 resultados para Fluorescent indicator proteins
Resumo:
The human TPTE (Transmembrane Phosphatase with TEnsin homology) gene family encodes a PTEN-related tyrosine phosphatase with four potential transmembrane domains. Chromosomal mapping revealed multiple copies of the TPTE gene on chromosomes 13, 15, 21, 22 and Y. Human chromosomes 13 and 21 copies encode two functional proteins, TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) and TPTE, respectively, whereas only one copy of the gene exists in the mouse genome. In the present study, we show that TPTE and TPIP proteins are expressed in secondary spermatocytes and/or prespermatids. In addition, we report the existence of several novel alternatively spliced isoforms of these two proteins with variable number of transmembrane domains. The latter has no influence on the subcellular localization of these different peptides as shown by co-immunofluorescence experiments. Finally, we identify another expressed TPTE copy, mapping to human chromosome 22, whose transcription appears to be under the control of the LTR of human endogenous retrovirus RTVL-H3.
Resumo:
Nearly full-length Circumsporozoite protein (CSP) from Plasmodium falciparum, the C-terminal fragments from both P. falciparm and P. yoelii CSP and a fragment comprising 351 amino acids of P.vivax MSPI were expressed in the slime mold Dictyostelium discoideum. Discoidin-tag expression vectors allowed both high yields of these proteins and their purification by a nearly single-step procedure. We exploited the galactose binding activity of Discoidin Ia to separate the fusion proteins by affinity chromatography on Sepharose-4B columns. Inclusion of a thrombin recognition site allowed cleavage of the Discoidin-tag from the fusion protein. Partial secretion of the protein was obtained via an ER independent pathway, whereas routing the recombinant proteins to the ER resulted in glycosylation and retention. Yields of proteins ranged from 0.08 to 3 mg l(-1) depending on the protein sequence and the purification conditions. The recognition of purified MSPI by sera from P. vivax malaria patients was used to confirm the native conformation of the protein expressed in Dictyostelium. The simple purification procedure described here, based on Sepharose-4B, should facilitate the expression and the large-scale purification of various Plasmodium polypeptides.
Resumo:
The efficient removal of a N- or C-terminal purification tag from a fusion protein is necessary to obtain a protein in a pure and active form, ready for use in human or animal medicine. Current techniques based on enzymatic cleavage are expensive and result in the presence of additional amino acids at either end of the proteins, as well as contaminating proteases in the preparation. Here we evaluate an alternative method to the one-step affinity/protease purification process for large-scale purification. It is based upon the cyanogen bromide (CNBr) cleavage at a single methionine placed in between a histidine tag and a Plasmodium falciparum antigen. The C-terminal segment of the circumsporozoite polypeptide was expressed as a fusion protein with a histidine tag in Escherichia coli purified by Ni-NAT agarose column chromatography and subsequently cleaved by CNBr to obtain a polypeptide without any extraneous amino acids derived from the cleavage site or from the affinity purification tag. Thus, a recombinant protein is produced without the need for further purification, demonstrating that CNBr cleavage is a precise, efficient, and low-cost alternative to enzymatic digestion, and can be applied to large-scale preparations of recombinant proteins.
Resumo:
The production of extracellular soluble proteins was studied in serum-free aggregating cell cultures of fetal rat telencephalon labeled on culture day 7 with a mixture of radioactive amino acid precursors. Cultures treated continuously with epidermal growth factor (EGF; 20 ng/ml) showed a generally increased protein secretion and a particularly enhanced production of a few distinct extracellular proteins. The time lag of this response after an initial dose of EGF (25 ng/ml) on day 7 was 48 h. The total macromolecular radioactivity that accumulated within 96 h of labeling in the media of EGF-treated cultures was 175% of untreated controls, whereas no difference was found in the proportions of intracellular amino acid incorporation. Cultures which received a single dose of EGF (25 ng/ml) on day 1 showed still a greatly increased protein secretion on day 7. Prevention of extracellular protein accumulation by reducing the initial cell number and increasing the rate of media changes did not affect the EGF-induced stimulation of the two glial enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase. The results suggest that both the increased production of extracellular proteins and the enhanced development of glial enzymatic activities reflect the stimulated phenotypic expression of EGF-sensitive brain cells.
Resumo:
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.
Resumo:
BACKGROUND: The hospital readmission rate has been proposed as an important outcome indicator computable from routine statistics. However, most commonly used measures raise conceptual issues. OBJECTIVES: We sought to evaluate the usefulness of the computerized algorithm for identifying avoidable readmissions on the basis of minimum bias, criterion validity, and measurement precision. RESEARCH DESIGN AND SUBJECTS: A total of 131,809 hospitalizations of patients discharged alive from 49 hospitals were used to compare the predictive performance of risk adjustment methods. A subset of a random sample of 570 medical records of discharge/readmission pairs in 12 hospitals were reviewed to estimate the predictive value of the screening of potentially avoidable readmissions. MEASURES: Potentially avoidable readmissions, defined as readmissions related to a condition of the previous hospitalization and not expected as part of a program of care and occurring within 30 days after the previous discharge, were identified by a computerized algorithm. Unavoidable readmissions were considered as censored events. RESULTS: A total of 5.2% of hospitalizations were followed by a potentially avoidable readmission, 17% of them in a different hospital. The predictive value of the screen was 78%; 27% of screened readmissions were judged clearly avoidable. The correlation between the hospital rate of clearly avoidable readmission and all readmissions rate, potentially avoidable readmissions rate or the ratio of observed to expected readmissions were respectively 0.42, 0.56 and 0.66. Adjustment models using clinical information performed better. CONCLUSION: Adjusted rates of potentially avoidable readmissions are scientifically sound enough to warrant their inclusion in hospital quality surveillance.
Resumo:
In this study we report that, in response to proteasome inhibition, the E3-Ubiquitin ligase TRIM50 localizes to and promotes the recruitment and aggregation of polyubiquitinated proteins to the aggresome. Using Hdac6-deficient mouse embryo fibroblasts (MEF) we show that this localization is mediated by the histone deacetylase 6, HDAC6. Whereas Trim50-deficient MEFs allow pinpointing that the TRIM50 ubiquitin-ligase regulates the clearance of polyubiquitinated proteins localized to the aggresome. Finally we demonstrate that TRIM50 colocalizes, interacts with and increases the level of p62, a multifunctional adaptor protein implicated in various cellular processes including the autophagy clearance of polyubiquitinated protein aggregates. We speculate that when the proteasome activity is impaired, TRIM50 fails to drive its substrates to the proteasome-mediated degradation, and promotes their storage in the aggresome for successive clearance.
Resumo:
STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.
Resumo:
External stresses or mutations may cause labile proteins to lose their distinct native conformations and seek alternatively stable aggregated forms. Molecular chaperones that specifically act on protein aggregates were used here as a tool to address the biochemical nature of stable homo- and hetero-aggregates from non-pathogenic proteins formed by heat-stress. Confirmed by sedimentation and activity measurements, chaperones demonstrated that a single polypeptide chain can form different species of aggregates, depending on the denaturing conditions. Indicative of a cascade reaction, sub-stoichiometric amounts of one fast-aggregating protein strongly accelerated the conversion of another soluble, slow-aggregating protein into insoluble, chaperone-resistant aggregates. Chaperones strongly inhibited seed-induced protein aggregation, suggesting that they can prevent and cure proteinaceous infectious behavior in homo- and hetero-aggregates from common and disease-associated proteins in the cell.
Resumo:
The protective capabilities of three Leishmania recombinant proteins - histone 1 (H1) and hydrophilic acylated surface protein B1 (HASPB1) immunized singly, or together as a protein cocktail vaccine with Montanide, and the polyprotein MML immunized with MPL-SE adjuvant - were assessed in beagle dogs. Clinical examination of the dogs was carried out periodically under blinded conditions and the condition of the dogs defined as asymptomatic or symptomatic. At the end of the trial, we were able to confirm that following infection with L. infantum promastigotes, five out of eight dogs immunized with H1 Montanide, and four out of eight dogs immunized with either the combination of HASPB1 with Montanide or the combination of H1+HASPB1 with Montanidetrade mark, remained free of clinical signs, compared with two out of seven dogs immunized with the polyprotein MML and adjuvant MPL-SE, and two out of eight dogs in the control group. The results demonstrate that HASPB1 and H1 antigens in combination with Montanide were able to induce partial protection against canine leishmaniasis, even under extreme experimental challenge conditions.
Resumo:
The SSX-2 gene encodes a tumor-specific antigen expressed in neoplasms of various histological types. By analyzing a tumor-infiltrated lymph node of a melanoma patient bearing an SSX-2-expressing tumor, we have recently identified the first SSX-2-derived CD8(+) T-cell epitope, that corresponds to peptide SSX-2(41-49), and is recognized by specific CTL in an HLA-A2 restricted fashion. Here, we have used fluorescent HLA-A2/SSX-2(41-49) peptide multimeric complexes to analyze the response to SSX-2(41-49) in melanoma patients and healthy donors. Multimer(+) CD8(+) T cells were readily detected in the majority of patients bearing SSX-2-expressing tumors and, at lower proportions, in patients with nonexpressing tumors and healthy donors. Importantly, isolated A2/SSX-2(41-49) multimer(+) CD8(+) T cells exhibited a large functional heterogeneity in terms of antigen recognition and tumor reactivity. SSX-2-specific CTLs isolated from tumor-infiltrated lymph node of antigen-expressing patients as well as from the corresponding peripheral blood mononuclear cells exhibited high functional avidity of antigen recognition and efficiently recognized antigen-expressing tumors. In contrast, SSX-2-specific CTLs isolated from patients with undetectable responses in the tumor-infiltrated lymph node, as well as from healthy donors, recognized the antigen with decreased functional avidity and were not tumor reactive. Together, these data indicate that CD8(+) T-cell responses to SSX-2(41-49) frequently occur in SSX-2-expressing melanoma patients and suggest that SSX-2(41-49)-specific CTLs of high avidity and tumor reactivity are selectively expanded during immune responses to SSX-2-expressing tumors in vivo.
Resumo:
In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue - the phenomenon known as planar cell polarity (PCP). In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.