322 resultados para Endogenous mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME L'hyperammonémie est particulièrement toxique pour le cerveau des jeunes patients et entraîne une atrophie corticale, un élargissement des ventricules et des défauts de myélinisation, responsables de retards mentaux et développementaux. Les traitements actuels se limitent à diminuer le plus rapidement possible le taux d'ammoniaque dans l'organisme. L'utilisation de traitements neuroprotecteurs pendant les crises d'hyperammonémie permettrait de contrecarrer les effets neurologiques de l'ammoniaque et de prévenir l'apparition des troubles neurologiques. Au cours de cette thèse, nous avons testé trois stratégies de neuroprotection sur des cultures de cellules en agrégats issues du cortex d'embryons de rats et traitées à l'ammoniaque. - Nous avons tout d'abord testé si l'inhibition de protéines intracellulaires impliquées dans le déclenchement de la mort cellulaire pouvait protéger les cellules de la toxicité de l'ammoniaque. Nous avons montré que L'exposition à l'ammoniaque altérait la viabilité des neurones et des oligodendrocytes, et activait les caspases, la calpaïne et la kinase-5 dépendante des cyclines (cdk5) associée à son activateur p25. Alors que l'inhibition pharmacologique des caspases et de la calpaïne n'a pas permis de protéger les cellules cérébrales, un inhibiteur de la cdk5, appelé roscovitine, a réduit significativement la mort neuronale. L'inhibition de la cdk5 semble donc être une stratégie thérapeutique prometteuse pour prévenir 1es effets toxiques de 1'ammoniaque sur les neurones. - Nous avons ensuite étudié les mécanismes neuroprotecteurs déclenchés par le cerveau en réponse à la toxicité de l'ammoniaque. Nous avons montré que l'ammoniaque induisait la synthèse du facteur neurotrophique ciliaire (CNTF) par les astrocytes, via l'activation de la protéine kinase (MIAPK) p38. D'autre part, l'ajout de CNTF a permis de protéger les oligodendrocytes mais pas les neurones des cultures exposées à l'ammoniaque, via les voies de signalisations JAK/STAT, SAPK/JNK et c-jun. - Dans une dernière partie, nous avons voulu contrecarrer, par l'ajout de créatine, le déficit énergétique cérébral induit par l'ammoniaque. La créatine a permis de protéger des cellules de type astrocytaire mais pas les cellules cérébrales en agrégats. Cette thèse amis en évidence que les stratégies de neuroprotection chez les patients hyperammonémiques nécessiteront de cibler plusieurs voies de signalisation afin de protéger tous les types cellulaires du cerveau. Summary : In pediatric patients, hyperammonemia is mainly caused by urea cycle disorders or other inborn errors of metabolism, and leads to neurological injury with cortical atrophy, ventricular enlargement and demyelination. Children rescued from neonatal hyperammonemia show significant risk of mental retardation and developmental disabilities. The mainstay of therapy is limited to ammonia lowering through dietary restriction and alternative pathway treatments. However, the possibility of using treatments in a neuroprotective goal may be useful to improve the neurological outcome of patients. Thus, the main objective of this work was to investigate intracellular and extracellular signaling pathways altered by ammonia tonicity, so as to identify new potential therapeutic targets. Experiments were conducted in reaggregated developing brain cell cultures exposed to ammonia, as a model for the developing CNS of hyperammonemic young patients. Theses strategies of neuroprotection were tested: - The first strategy consisted in inhibiting intracellular proteins triggering cell death. Our data indicated that ammonia exposure altered the viability of neurons and oligodendrocytes. Apoptosis and proteins involved in the trigger of apoptosis, such as caspases, calpain and cyclin-dependent kinase-5 (cdk5) with its activator p25, were activated by ammonia exposure. While caspases and calpain inhibitors exhibited no protective effects, roscovitine, a cdk5 inhibitor, reduced ammonia-induced neuronal death. This work revealed that inhibition of cdk5 seems a promising strategy to prevent the toxic effects of ammonia on neurons. - The second strategy consisted in mimicking, the endogenous protective mechanisms triggered by ammonia in the brain. Ammonia exposure caused an increase of the ciliary neurotrophic factor (CNTF) expression, through the activation of the p38 mitogen-activated protein kinase (MAPK) in astrocytes. Treatment of cultures exposed to ammonia with exogenous CNTF demonstrated strong protective effects on oligodendrocytes but not on neurons. These protective effects seemed to involve JAK/STAT, SAPK/JNK and c-jun proteins. - The third strategy consisted in preventing the ammonia-induced cerebral energy deficit with creatine. Creatine treatment protected the survival of astrocyte-like cells through MAPKs pathways. In contrast, it had no protective effects in reaggregated developing brain cell cultures exposed to ammonia. The present study suggests that neuroprotective strategies should optimally be directed at multiple targets to prevent ammonia-induced alterations of the different brain cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Nuclear factor kappa B (NF-κB) transcription factors control many aspects of cell fate through induction of inflammatory, immune or survival molecules. We have identified two novel proteins, named receptor interacting protein (RIP)-4 and caspase recruitment domain (CARD) adaptor inducing interferon-β (Cardif), which activate NF-κB. Further, we have found that Cardif plays a prominent antiviral function. Antiviral innate immunity is mounted upon recognition by the host of virally associated structures like double-stranded (ds) RNA, which constitutes a viral replication product of many viruses within infected cells. dsRNA, depending on its subcellular localization, can be sensed by two separate arms of host defense. Firstly, Toll-like receptor (TLR)-3, a member of the type I transmembrane TLR family, recognizes endosomally-located dsRNA. Secondly, cytoplasmic dsRNA is detected by the recently identified RNA helicase retinoic acid inducible gene I (RIG-I). Triggering of TLR3- and RIG-I-dependent pathways results in the activation of the transcription factors NF-κB and Interferon regulatory factor (IRF)-3, which cooperatively transduce antiviral immune responses. We have demonstrated that RIP1, a kinase previously shown to be required for TNF signaling, transmits TLR3-dependent NF-κB activation. Further we have identified and characterized Cardif as an essential adaptor transmitting RIG-I-mediated antiviral responses, including activation of NF-κB and IRF3. In addition, we showed that Cardif is cleaved and inactivated by a serine protease of hepatitis C virus, and therefore may represent an attractive target for this virus to escape innate immune responses. RESUME Les facteurs de transcription "nuclear factor kappa B" (NF-κB) contrôlent divers aspects du devenir cellulaire à travers l'induction de molécules inflammatoires, immunitaires ou de survie. Nous avons identifié deux nouvelles protéines, nommées "receptor interacting protein" (RIP)-4 et "caspase recruitment domain (CARD) adaptor inducing interferon-β" (Cardif), qui activent NF-κB. En outre, nous avons trouvé que Cardif joue un rôle antiviral crucial. L'immunité innée antivirale s'établit au moment de la reconnaissance par l'hôte de structures virales, comme l'ARN double brin, qui constitue un produit de réplication de beaucoup de virus à l'intérieur de cellules infectées. L'ARN double brin, dépendant de sa localisation subcellulaire, peut être détecté par deux branches de défense distinctes. Premièrement, le récepteur transmembranaire "Toll-like" (TLR), TLR3, reconnaît l'ARN double brin lorsque localisé dans les endosomes. Deuxièmement, l'ARN double brin cytoplasmique est reconnu par l'ARN hélicase récemment décrite "retinoic acid inducible gene I" (RIG-I). Le déclenchement de voies dépendantes de TLR3 et RIG-I active les facteurs de transcription NF-κB et IRF3, qui coopèrent afin de transduire des réponses immunitaires antivirales. Nous avons démontré que RIP1, une kinase décrite précédemment dans le signalement du TNF, transmet l'activation de NF-κB dépendante de TLR3. De plus, nous avons identifié et caractérisé Cardif comme un adapteur essentiel transmettant les réponses antivirales médiées par RIG-I, qui incluent l'activation de NF-κB et IRF3. De surcroît, Cardif est clivé et inactivé par une sérine protéase du virus de l'hépatite C, et ainsi pourrait représenter une cible attractive pour ce virus afin d'échapper aux réponses immunitaires innées.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Most studies on alcohol as a risk factor for injuries have been mechanism specific, and few have considered several mechanisms simultaneously or reported alcohol-attributable fractions (AAFs)-which was the aim of the current study. METHOD: Data from 3,592 injured and 3,489 noninjured patients collected between January 2003 and June 2004 in the surgical ward of the emergency department of the Lausanne University Hospital (Switzerland) were analyzed. Four injury mechanisms derived from the International Classification of Diseases, 10th Revision, were considered: transportation-related injuries, falls, exposure to forces and other events, and interpersonal violence. Multinomial logistic regression models were calculated to estimate the risk relationships of different levels of alcohol consumption, using noninjured patients as quasi-controls. The AAFs were then calculated. RESULTS: Risk relationships between injury and acute consumption were found across all mechanisms, commonly resulting in dose-response relationships. Marked differences between mechanisms were observed for relative risks and AAFs, which varied between 15.2% and 33.1% and between 10.1% and 35.9%, depending on the time window of consumption (either 6 hours or 24 hours before injury, respectively). Low and medium levels of alcohol consumption generally were associated with the most AAFs. CONCLUSIONS: This study underscores the implications of even low levels of alcohol consumption on the risk of sustaining injuries through any of the mechanisms considered. Substantial AAFs are reported for each mechanism, particularly for injuries resulting from interpersonal violence. Observation of a so-called preventive paradox phenomenon is discussed, and prevention or intervention measures are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5' flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogenin minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells. In contrast to the transfected genes, the endogenous chromosomal vitellogenin genes remain silent, demonstrating that in spite of the presence of the hER and the hormone, the conditions necessary for their activation are not fulfilled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrombin is involved in mediating neuronal death in cerebral ischemia. We investigated its so far unknown mode of activation in ischemic neural tissue. We used an in vitro approach to distinguish the role of circulating coagulation factors from endogenous cerebral mechanisms. We modeled ischemic stroke by subjecting rat organotypic hippocampal slice cultures to 30-min oxygen (5%) and glucose (1 mmol/L) deprivation (OGD). Perinuclear activated factor X (FXa) immunoreactivity was observed in CA1 neurons after OGD. Selective FXa inhibition by fondaparinux during and after OGD significantly reduced neuronal death in the CA1 after 48 h. Thrombin enzyme activity was increased in the medium 24 h after OGD and this increase was prevented by fondaparinux suggesting that FXa catalyzes the conversion of prothrombin to thrombin in neural tissue after ischemia in vitro. Treatment with SCH79797, a selective antagonist of the thrombin receptor protease-activated receptor-1 (PAR-1), significantly decreased neuronal cell death indicating that thrombin signals ischemic damage via PAR-1. The c-Jun N-terminal kinase (JNK) pathway plays an important role in excitotoxicity and cerebral ischemia and we observed activation of the JNK substrate, c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonist SCH79797, decreased the level of phospho-c-Jun Ser73. These results indicate that FXa activates thrombin in cerebral ischemia, which leads via PAR-1 to the activation of the JNK pathway resulting in neuronal death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antemortem demonstration of ischemia has proved elusive in head injury because regional CBF reductions may represent hypoperfusion appropriately coupled to hypometabolism. Fifteen patients underwent positron emission tomography within 24 hours of head injury to map cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction (OEF). We estimated the volume of ischemic brain (IBV) and used the standard deviation of the OEF distribution to estimate the efficiency of coupling between CBF and CMRO2. The IBV in patients was significantly higher than controls (67 +/- 69 vs. 2 +/- 3 mL; P < 0.01). The coexistence of relative ischemia and hyperemia in some patients implies mismatching of perfusion to oxygen use. Whereas the saturation of jugular bulb blood (SjO2) correlated with the IBV (r = 0.8, P < 0.01), SjO2 values of 50% were only achieved at an IBV of 170 +/- 63 mL (mean +/- 95% CI), which equates to 13 +/- 5% of the brain. Increases in IBV correlated with a poor Glasgow Outcome Score 6 months after injury (rho = -0.6, P < 0.05). These results suggest significant ischemia within the first day after head injury. The ischemic burden represented by this "traumatic penumbra" is poorly detected by bedside clinical monitors and has significant associations with outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI). However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds) evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z) expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida albicans causes superficial to systemic infections in immuno-compromised individuals. The concomitant use of fungistatic drugs and the lack of cidal drugs frequently result in strains that could withstand commonly used antifungals, and display multidrug resistance (MDR). In search of novel fungicidals, in this study, we have explored a plant alkaloid berberine (BER) for its antifungal potential. For this, we screened an in-house transcription factor (TF) mutant library of C. albicans strains towards their susceptibility to BER. Our screen of TF mutant strains identified a heat shock factor (HSF1), which has a central role in thermal adaptation, to be most responsive to BER treatment. Interestingly, HSF1 mutant was not only highly susceptible to BER but also displayed collateral susceptibility towards drugs targeting cell wall (CW) and ergosterol biosynthesis. Notably, BER treatment alone could affect the CW integrity as was evident from the growth retardation of MAP kinase and calcineurin pathway null mutant strains and transmission electron microscopy. However, unlike BER, HSF1 effect on CW appeared to be independent of MAP kinase and Calcineurin pathway genes. Additionally, unlike hsf1 null strain, BER treatment of Candida cells resulted in dysfunctional mitochondria, which was evident from its slow growth in non-fermentative carbon source and poor labeling with mitochondrial membrane potential sensitive probe. This phenotype was reinforced with an enhanced ROS levels coinciding with the up-regulated oxidative stress genes in BER-treated cells. Together, our study not only describes the molecular mechanism of BER fungicidal activity but also unravels a new role of evolutionary conserved HSF1, in MDR of Candida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mononuclear phagocytes are essential for the innate response to pathogens and for the repair of injured tissue. The cells - which can be broadly divided into circulating monocytes and tissue-resident macrophages and dendritic cells - are selectively equipped to protect the host by mediating pleiotropic and tissue-specific functions. The properties of some mononuclear phagocytes, however, also contribute to the development and the progression of inflammatory diseases. Consequently, current research investigates mononuclear phagocytes into greater detail with the aim to clarify their contributions to pathophysiologic inflammation. Recent studies indicate that circulating monocytes can be divided into distinct populations, which differ in their tissue tropism and functional commitment. Also, tissue macrophages and dendritic cells have been found to adopt context-dependent phenotypes, which can range from "pro-" to "anti-" inflammatory. These findings have markedly contributed to our understanding of the functional heterogeneity of mononuclear phagocyte populations. Yet, in many cases, the factors that control the quantity and/or quality of phagocyte responses in vivo remain largely unknown. The goal of this thesis was to identify cell endogenous and cell exogenous factors that dictate the fate of mononuclear phagocyte populations. To this end we made use of the recent identification of phenotypic markers, which permit to track mononuclear cell types and their lineage precursors. A main approach consisted to define candidate regulatory factors of certain types of mononuclear phagocytes and then to manipulate the expression of these factors in mice so as to address their functions and causal contributions on mononuclear phagocyte lineages in vivo. Human patient material was further used to validate findings. First, we investigated a microRNA and a transcription factor as candidate cell endogenous co- regulators of monocyte subset responses. Second, we studied a tumor-derived hormone as a candidate exogenous factor that amplifies the production of a population of mononuclear phagocytes with tumor-promoting functions. The endogenous and exogenous factors identified in this research appear to act as effective regulators of mononuclear phagocyte responses in vivo and thus may be exploited in future therapeutic approaches to regulate disease-associated inflammation. - Les phagocytes mononucléaires sont essentiels pour la réponse innée aux pathogènes et pour la réparation des tissus lésés. Ces cellules - qui peuvent être largement divisées en deux groupes, les monocytes circulant dans le sang et les macrophages et cellules dendritiques résidant dans les tissus - sont capables de protéger l'hôte en exerçant des fonctions pléiotropiques. Cependant, les propriétés de certains phagocytes mononucléaires contribuent également au développement et à la progression des maladies inflammatoires. Par conséquent, la recherche actuelle étudie les phagocytes mononucléaires plus en détail afin de clarifier leurs contributions à l'inflammation pathophysiologique. Des études récentes indiquent que les monocytes circulants peuvent être divisés en populations distinctes, qui diffèrent dans leur tropisme tissulaire et dans leurs fonctions biologiques. En outre, les macrophages et les cellules dendritiques peuvent adopter des phénotypes dépendants de l'environnement dans lequel ils se trouvent; ces phénotypes peuvent aller du type "pro-" au type "anti-" inflammatoire. Ces récentes découvertes ont contribué à notre compréhension sur l'hétérogénéité fonctionnelle des phagocytes mononucléaires. Pourtant, dans de nombreux cas, les facteurs qui contrôlent la quantité et/ou la qualité des réponses produites par ces cellules restent encore largement inconnus. L'objectif de cette thèse a consisté à identifier de nouveaux facteurs (endogènes ou exogènes) qui contrôlent les phagocytes mononucléaires. Dans ce but, nous avons fait usage de l'identification récente de marqueurs qui permettent d'identifier différents types de phagocytes mononucléaires ainsi que des cellules (souches) dont ils sont issus. Notre approche a consisté à définir des facteurs candidats qui pourraient contrôler certains phagocytes mononucléaires, puis à manipuler l'expression de ces facteurs chez la souris de manière à tester leurs fonctions et leur contributions in vivo. Nous avons également utilisé des échantillons biologiques de patients pour vérifier nos résultats chez l'homme. Tout d'abord, nous avons étudié un microARN et un facteur de transcription pour déterminer si ces deux facteurs opèrent en tant que co-régulateurs d'un certain type de monocytes. Deuxièmement, nous avons considéré une hormone produite par certaines tumeurs afin d'examiner son rôle dans la production d'une population de macrophages qui favorisent la progression des tumeurs. Les facteurs endogènes et exogènes identifiés dans cette recherche semblent agir comme régulateurs dominants de réponses produites par certains phagocytes mononucléaires et pourraient donc être exploités dans de futures approches thérapeutiques afin de contrôler les réponses immunitaires inflammatoires associées a certaines maladies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyze the role of the murine hepatoportal glucose sensor in the control of whole-body glucose metabolism, we infused glucose at a rate corresponding to the endogenous glucose production rate through the portal vein of conscious mice (Po-mice) that were fasted for 6 h. Mice infused with glucose at the same rate through the femoral vein (Fe-mice) and mice infused with a saline solution (Sal-mice) were used as controls. In Po-mice, hypoglycemia progressively developed until glucose levels dropped to a nadir of 2.3 +/- 0.1 mmol/l, whereas in Fe-mice, glycemia rapidly and transiently developed, and glucose levels increased to 7.7 +/- 0.6 mmol/l before progressively returning to fasting glycemic levels. Plasma insulin levels were similar in both Po- and Fe-mice during and at the end of the infusion periods (21.2 +/- 2.2 vs. 25.7 +/- 0.9 microU/ml, respectively, at 180 min of infusion). The whole-body glucose turnover rate was significantly higher in Po-mice than in Fe-mice (45.9 +/- 3.8 vs. 37.7 +/- 2.0 mg x kg(-1) x min)-1), respectively) and in Sal-mice (24.4 +/- 1.8 mg x kg(-1) x min(-1)). Somatostatin co-infusion with glucose in Po-mice prevented hypoglycemia without modifying the plasma insulin profile. Finally, tissue glucose clearance, which was determined after injecting 14C-2-deoxyglucose, increased to a higher level in Po-mice versus Fe-mice in the heart, brown adipose tissue, and the soleus muscle. Our data show that stimulation of the hepatoportal glucose sensor induced hypoglycemia and increased glucose utilization by a combination of insulin-dependent and insulin-independent or -sensitizing mechanisms. Furthermore, activation of the glucose sensor and/or transmission of its signal to target tissues can be blocked by somatostatin.