271 resultados para Embedded Cell Model
Resumo:
Fas-deficient mice (Fas(lpr/lpr)) and humans have profoundly dysregulated T lymphocyte homeostasis, which manifests as an accumulation of CD4(+) and CD8(+) T cells as well as an unusual population of CD4(-)CD8(-)TCRαβ(+) T cells. To date, no unifying model has explained both the increased T-cell numbers and the origin of the CD4(-)CD8(-)TCRαβ(+) T cells. As Fas(lpr/lpr) mice raised in a germ-free environment still manifest lymphadenopathy, we considered that this process is primarily driven by recurrent low-avidity TCR signaling in response to self-peptide/MHC as occurs during homeostatic proliferation. In these studies, we developed two independent systems to decrease the number of self-peptide/MHC contacts. First, expression of MHC class I was reduced in OT-I TCR transgenic mice. Although OT-I Fas(lpr/lpr) mice did not develop lymphadenopathy characteristic of Fas(lpr/lpr) mice, in the absence of MHC class I, OT-I Fas(lpr/lpr) T cells accumulated as both CD8(+) and CD4(-)CD8(-) T cells. In the second system, re-expression of β(2)m limited to thymic cortical epithelial cells of Fas(lpr/lpr) β(2)m-deficient mice yielded a model in which polyclonal CD8(+) thymocytes entered a peripheral environment devoid of MHC class I. These mice accumulated significantly greater numbers of CD4(-)CD8(-)TCRαβ(+) T cells than conventional Fas(lpr/lpr) mice. Thus, Fas shapes the peripheral T-cell repertoire by regulating the survival of a subset of T cells proliferating in response to limited self-peptide/MHC contacts.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Isolated limb perfusion (ILP) with melphalan and tumor necrosis factor (TNF)-α is used to treat bulky, locally advanced melanoma and sarcoma. However, TNF toxicity suggests a need for better-tolerated drugs. Cilengitide (EMD 121974), a novel cyclic inhibitor of alpha-V integrins, has both anti-angiogenic and direct anti-tumor effects and is a possible alternative to TNF in ILP. In this study, rats bearing a hind limb soft tissue sarcoma underwent ILP using different combinations of melphalan, TNF and cilengitide in the perfusate. Further groups had intra-peritoneal (i.p.) injections of cilengitide or saline 2 hr before and 3 hr after ILP. A 77% response rate (RR) was seen in animals treated i.p. with cilengitide and perfused with melphalan plus cilengitide. The RR was 85% in animals treated i.p. with cilengitide and ILP using melphalan plus both TNF and cilengitide. Both RRs were significantly greater than those seen with melphalan or cilengitide alone. Histopathology showed that high RRs were accompanied by disruption of tumor vascular endothelium and tumor necrosis. Compared with ILP using melphalan alone, the addition of cilengitide resulted in a three to sevenfold increase in melphalan concentration in tumor but not in muscle in the perfused limb. Supportive in vitro studies indicate that cilengitide both inhibits tumor cell attachment and increases endothelial permeability. Since cilengitide has low toxicity, these data suggest the agent is a good alternative to TNF in the ILP setting.
Resumo:
Radioiodinated murine monoclonal antibodies (Mabs) 81C6, Me 1-14, C12, D12, and E9, made against or reactive with human gliomas but not normal brain, and Mab UJ13A, a pan-neuroectodermal Mab reactive with normal human glial and neural cells, were evaluated in paired label studies in the D-54 MG subcutaneous human glioma xenograft model system in nude mice. Following intravenous injection in the tail vein of mice bearing 200-400 mm3 tumors, specific localization of Mabs to tumor over time (6 h-9 days) was evaluated by tissue counting; each Mab demonstrated a unique localization profile. The comparison of localization indices (LI), determined as a ratio of tissue level of Mab to control immunoglobulin with simultaneous correction for blood levels of each, showed Mabs 81C6 and Me 1-14 to steadily accumulate in glioma xenografts, maintaining LI from 5-20 at 7-9 days after Mab injection. Mab UJ13A peaked at day 1, maintaining this level through day 2, and declining thereafter. Mabs D12 and C12 peaked at days 3 and 4, respectively, and E9 maintained an LI of greater than 3 from days 3-9. Percent injected dose localized/g of tumor varied from a peak high of 16% (81C6) to a low of 5% (Me 1-14 and UJ13A). Immunoperoxidase histochemistry, performed with each Mab on a battery of primary human brain neoplasms, revealed that Mabs 81C6 and E9, which demonstrated the highest levels of percent injected dose localized/g of tumor over time, reacted with antigens expressed in the extracellular matrix. This finding suggests that extracellular matrix localization of antigen represents a biologically significant factor affecting localization and/or binding in the xenograft model used. The demonstration of significant localization, varied kinetics and patterns of localization of this localizing Mab panel warrants their continued investigation as potential imaging and therapeutic agents for human trials.
Resumo:
Quantitative knowledge of the turnover of different leukocyte populations is a key to our understanding of immune function in health and disease. Much progress has been made thanks to the introduction of stable isotope labeling, the state-of-the-art technique for in vivo quantification of cellular life spans. Yet, even leukocyte life span estimates on the basis of stable isotope labeling can vary up to 10-fold among laboratories. We investigated whether these differences could be the result of variances in the length of the labeling period among studies. To this end, we performed deuterated water-labeling experiments in mice, in which only the length of label administration was varied. The resulting life span estimates were indeed dependent on the length of the labeling period when the data were analyzed using a commonly used single-exponential model. We show that multiexponential models provide the necessary tool to obtain life span estimates that are independent of the length of the labeling period. Use of a multiexponential model enabled us to reduce the gap between human T-cell life span estimates from 2 previously published labeling studies. This provides an important step toward unambiguous understanding of leukocyte turnover in health and disease.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen-presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide-specific responses. In this study, we explored the contributions of naïve and memory CD4(+) T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4(+) T cells, both naturally occurring and induced by sensitization with multiple third-party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4(+)CD25(+) T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.
Resumo:
The identification of endogenously produced antigenic peptides presented by MHC class I molecules has opened the way to peptide-based strategies for CTL induction in vivo. Here we demonstrate that the induction in vivo of CTL directed against naturally processed antigens can be triggered by injection of syngeneic cells expressing covalent major histocompatibility complex class I-peptide complexes. In the model system used, the induction of HLA-Cw3 specific cytotoxic T lymphocytes (CTL) in mice by cell surface-associated, covalent H-2Kd (Kd)-Cw3 peptide complexes was investigated. The Kd-restricted Cw3 peptide 170-179 (RYLKNGKETL), which mimics the major natural epitope recognized by Cw3-specific CTL in H-2d mice, was converted to a photoreactive derivative by replacing Arg-170 with N-beta-(4-azidosalicyloyl)-L-2,3-diaminopropionic acid. This peptide derivative was equivalent to the parental Cw3 peptide in terms of binding to Kd molecules and recognition by Cw3-specific CTL clones and could be cross-linked efficiently and selectively to Kd molecules on the surface of Con A-stimulated spleen cells from H-2d mice. Photocross-linking prevented the rapid dissociation of Kd-peptide derivative complexes that takes place under physiological conditions. Cultures of spleen cells or peritoneal exudate cells from mice inoculated i.p. with peptide-pulsed and photocross-linked cells developed a strong CTL response following antigenic stimulation in vitro. The cultured cells efficiently lysed not only target cells sensitized with the Cw3 170-179 peptide but also target cells transfected with the Cw3 gene. Moreover, their TCR preferentially expressed V beta 10 and J alpha pHDS58 segments as well as conserved junctional sequences, as has been observed previously in Cw3-specific CTL responses. In contrast, no Cw3-specific CTL response could be obtained in cultures derived from mice injected with Con A-stimulated spleen cells pulsed with the peptide derivative without photocross-linking.
Resumo:
Interest groups advocate centre-specific outcome data as a useful tool for patients in choosing a hospital for their treatment and for decision-making by politicians and the insurance industry. Haematopoietic stem cell transplantation (HSCT) requires significant infrastructure and represents a cost-intensive procedure. It therefore qualifies as a prime target for such a policy. We made use of the comprehensive database of the Swiss Blood Stem Cells Transplant Group (SBST) to evaluate potential use of mortality rates. Nine institutions reported a total of 4717 HSCT - 1427 allogeneic (30.3%), 3290 autologous (69.7%) - in 3808 patients between the years 1997 and 2008. Data were analysed for survival- and transplantation-related mortality (TRM) at day 100 and at 5 years. The data showed marked and significant differences between centres in unadjusted analyses. These differences were absent or marginal when the results were adjusted for disease, year of transplant and the EBMT risk score (a score incorporating patient age, disease stage, time interval between diagnosis and transplantation, and, for allogeneic transplants, donor type and donor-recipient gender combination) in a multivariable analysis. These data indicate comparable quality among centres in Switzerland. They show that comparison of crude centre-specific outcome data without adjustment for the patient mix may be misleading. Mandatory data collection and systematic review of all cases within a comprehensive quality management system might, in contrast, serve as a model to ascertain the quality of other cost-intensive therapies in Switzerland.
Resumo:
Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.
Resumo:
Minocycline has been shown to inhibit microglia reactivity, and to decrease the severity and progression of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. It remained to be examined whether minocycline was also able to promote remyelination. In the present study, myelinating aggregating brain cell cultures were used as a model to study the effects of minocycline on microglial reactivity, demyelination, and remyelination. Cultures were treated simultaneously with two inflammatory agents, interferon-γ (IFN-γ) and lipopolysaccharide (LPS), which caused an inflammatory response accompanied by demyelination. The inflammatory response was characterized by microglial reactivity, upregulation of inflammatory cytokines and iNOS, and increased phophorylation of P38 and P44/42 mitogen activated protein (MAP) kinases. Minocycline inhibited microglial reactivity, and attenuated the increased phophorylation of P38 and P44/42 MAP kinases. Demyelination, determined by a decrease in myelin basic protein (MBP) content and immunoreactivity 48 h after the treatment with the inflammatory agents, was not prevented by minocycline. However, 1 week after demyelination was assessed, the MBP content was restored in presence of minocycline, indicating that remyelination was promoted. Concomitantly, in cultures treated with minocycline, the markers of oligodendrocyte precursors cells (OPCs) and immature oligodendrocytes NG2 and O4, respectively, were decreased compared to cultures treated with the inflammatory agents only. These results suggest that minocycline attenuates microglial reactivity and favors remyelination by enhancing the differentiation of OPCs and immature oligodendrocytes.
Resumo:
Introduction: Diffuse large B-cell lymphomas (DLBCL) represent a heterogeneous disease with variable clinical outcome. Identifying phenotypic biomarkers of tumor cells on paraffin sections that predict different clinical outcome remain an important goal that may also help to better understand the biology of this lymphoma. Differentiating non-germinal centre B-cell-like (non-GCB) from Germinal Centre B-cell-like (GCB) DLBCL according to Hans algorithm has been considered as an important immunohistochemical biomarker with prognostic value among patients treated with R-CHOP although not reproducibly found by all groups. Gene expression studies have also shown that IgM expression might be used as a surrogate for the GCB and ABC subtypes with a strong preferential expression of IgM in ABC DLBCL subtype. ImmunoFISH index based on the differential expression of MUM-1, FOXP1 by immunohistochemistry and on the BCL6 rearrangement by FISH has been previously reported (C Copie-Bergman, J Clin Oncol. 2009;27:5573-9) as prognostic in an homogeneous series of DLBCL treated with R-CHOP. In addition, oncogenic MYC protein overexpression by immunohistochemistry may represent an easy tool to identify the consequences of MYC deregulation in DLBCL. Our aim was to analyse by immunohistochemistry the prognostic relevance of MYC, IgM, GCB/nonGCB subtype and ImmunoFISH index in a large series of de novo DLBCL treated with Rituximab (R)-chemotherapy (anthracyclin based) included in the 2003 program of the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials. Methods: The 2003 program included patients with de novo CD20+ DLBCL enrolled in 6 different LNH-03 GELA trials (LNH-03-1B, -B, -3B, 39B, -6B, 7B) stratifying patients according to age and age-adjusted IPI. Tumor samples were analyzed by immunohistochemistry using CD10, BCL6, MUM1, FOXP1 (according to Barrans threshold), MYC, IgM antibodies on tissue microarrays and by FISH using BCL6 split signal DNA probes. Considering evaluable Hans score, 670 patients were included in the study with 237 (35.4%) receiving intensive R-ACVBP regimen and 433 (64.6%) R-CHOP/R-mini-CHOP. Results: 304 (45.4%) DLBCL were classified as GCB and 366 (54.6%) as non-GCB according to Hans algorithm. 337/567 cases (59.4%) were positive for the ImmunoFISH index (i.e. two out of the three markers positive: MUM1 protein positive, FOXP1 protein Variable or Strong, BCL6 rearrangement). Immunofish index was preferentially positive in the non-GCB subtype (81.3%) compared to the GCB subtype (31.2%), (p<0.001). IgM was recorded as positive in tumor cells in 351/637 (52.4%) DLBCL cases with a preferential expression in non-GCB 195 (53.3%) vs GCB subtype 100(32.9%), p<0.001). MYC was positive in 170/577 (29.5%) cases with a 40% cut-off and in 44/577 (14.2%) cases with a cut-off of 70%. There was no preferential expression of MYC among GCB or non-GCB subtype (p>0.4) for both cut-offs. Progression-free Survival (PFS) was significantly worse among patients with high IPI score (p<0.0001), IgM positive tumor (p<0.0001), MYC positive tumor with a 40% threshold (p<0.001), ImmunoFISH positive index (p<0.002), non-GCB DLBCL subtype (p<0.0001). Overall Survival (OS) was also significantly worse among patients with high IPI score (p<0.0001), IgM positive tumor (p=0.02), MYC positive tumor with a 40% threshold (p<0.01), ImmunoFISH positive index (p=0.02), non-GCB DLBCL subtype (p<0.0001). All significant parameters were included in a multivariate analysis using Cox Model and in addition to IPI, only the GCB/non-GCB subtype according to Hans algorithm predicted significantly a worse PFS among non-GCB subgroup (HR 1.9 [1.3-2.8] p=0.002) as well as a worse OS (HR 2.0 [1.3-3.2], p=0.003). This strong prognostic value of non-GCB subtyping was confirmed considering only patients treated with R- CHOP for PFS (HR 2.1 [1.4-3.3], p=0.001) and for OS (HR 2.3 [1.3-3.8], p=0.002). Conclusion: Our study on a large series of patients included in trials confirmed the relevance of immunohistochemistry as a useful tool to identify significant prognostic biomarkers for clinical use. We show here that IgM and MYC might be useful prognostic biomarkers. In addition, we confirmed in this series the prognostic value of the ImmunoFISH index. Above all, we fully validated the strong and independent prognostic value of the Hans algorithm, daily used by the pathologists to subtype DLBCL.
Resumo:
The first experimental evidence for the development of polarized CD4+ Th1 and Th2 responses in vivo has been obtained using the murine model of infection with Leishmania major, an intracellular parasite of macrophages in their vertebrate host. Genetically determined resistance and susceptibility to infection with this parasite have been clearly demonstrated to result from the development of polarized Th1 and Th2 responses, respectively. Using this model system, the dominant role of cytokines in the induction of polarized CD4+ responses has been validated in vivo. The requisite role of IL-4 in mediating both Th2 differentiation and susceptibility to infection in BALB/c mice has directed interest towards the search for evidence of IL-4 production early after infection and identification of its cellular source. We have been able to demonstrate a burst of IL-4 production in susceptible BALB/c mice within the first day of infection with L. major and could establish that this rapidly produced IL-4 instructed Th2 lineage commitment of subsequently activated CD4+ T cells and stabilized this commitment by downregulating IL-12 Rbeta2 chain expression, resulting in susceptibility to infection. Strikingly, this early IL-4 response to infection resulted from the cognate recognition of a single epitope in a distinctive antigen, LACK, from this complex microorganism by a restricted population of CD4+ T cells that express Vbeta4-Valpha8 T cell receptors.
Resumo:
BACKGROUND: Isolated lung perfusion (ILP) with free and a novel liposomal-encapsulated doxorubicin (Liporubicin, CT Sciences SA, Lausanne, Switzerland) was compared with respect to drug uptake and distribution in rat lungs bearing a sarcomatous tumor. METHODS: A single sarcomatous tumor was generated in the left lung of 39 Fischer rats, followed 10 days later by left-sided ILP (n = 36) with free and equimolar-dosed liposomal doxorubicin at doses of 100 microg (n = 9) and 400 microg (n = 9) for each doxorubicin formulation. In each perfused lung, the drug concentration and distribution were assessed in the tumor and in three areas of normal lung parenchyma by high-performance liquid chromatography (n = 6) and fluorescence microscopy (n = 3). Histologic assessment and immunostaining with von Willebrand factor was performed in 3 animals with untreated tumors. RESULTS: The sarcomatous tumors in controls were well vascularized with fine branching capillaries present throughout the tumors. Isolated lung perfusion resulted in a heterogeneous drug distribution within the perfused lung and a consistently lower drug uptake in tumors than in lung parenchyma for both doxorubicin formulations and both drug doses applied. Isolated lung perfusion with free doxorubicin resulted in a significantly higher drug uptake than Liporubicin in both the tumor and lung tissue for both drug doses applied (p < 0.01). However, the tumor/normal tissue drug ratio was lower for free than for liposomal doxorubicin at a drug dose of 100 microg (0.27 +/- 0.1 vs 0.53 +/- 0.5; p = 0.225) and similar for both doxorubicin formulations at a drug dose of 400 microg (0.67 +/- 0.2 vs 0.54 +/- 0.2; p = 0.335). Both doxorubicin formulations resulted in fluorescence signaling emerging from all tissue compartments of normal lung parenchyma but only in weak and sporadic signaling from the tumors confined to the tumor periphery and vessels situated within the tumor for both drug doses assessed. CONCLUSIONS: Isolated lung perfusion with free and liposomal doxorubicin resulted in a heterogeneous drug distribution within the perfused lung and in a lower drug uptake in tumors than in lung tissue for both doxorubicin formulations and drug doses applied.