206 resultados para DIAPHYSEAL FEMUR FRACTURES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m?2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008?May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m?year?1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY: In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 +/- 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures. INTRODUCTION: A study was carried out to determine whether BMD measurement at the distal tibia sites of T-EPI and T-DIA is predictive of clinical fracture risk. METHODS: In a predefined representative cohort of Swiss community-dwelling elderly women aged 70-80 years included in the prospective, multi-centre Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture risk (SEMOF) study, fracture risk profile was assessed and BMD measured at the lumbar spine (LS), hip (HIP) and tibia (T-DIA and T-EPI) using DXA. Thereafter, clinical fractures were reported in a bi-yearly questionnaire. RESULTS: During 1,786 women-years of follow-up, 68 clinical fragility fractures occurred in 61 women. Older age and previous fracture were identified as risk factors for the present fractures. A decrease of 1 standard deviation in BMD values yielded a 1.5-fold (HIP) to 1.8-fold (T-EPI) significant increase in clinical fragility fracture hazard ratio (adjusted for age and previous fracture). All measured sites had comparable performance for fracture prediction (area under the curve range from 0.63 [LS] to 0.68 [T-EPI]). CONCLUSION: Fracture risk prediction with BMD measurements at T-DIA and T-EPI is a valid alternative to BMD measurements at LS or HIP for patients in whom these sites cannot be accessed for clinical, technical or practical reasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Postmortem computed tomography angiography (PMCTA) was introduced into forensic investigations a few years ago. It provides reliable images that can be consulted at any time. Conventional autopsy remains the reference standard for defining the cause of death, but provides only limited possibility of a second examination. This study compares these two procedures and discusses findings that can be detected exclusively using each method. MATERIALS AND METHODS: This retrospective study compared radiological reports from PMCTA to reports from conventional autopsy for 50 forensic autopsy cases. Reported findings from autopsy and PMCTA were extracted and compared to each other. PMCTA was performed using a modified heart-lung machine and the oily contrast agent Angiofil® (Fumedica AG, Muri, Switzerland). RESULTS: PMCTA and conventional autopsy would have drawn similar conclusions regarding causes of death. Nearly 60 % of all findings were visualized with both techniques. PMCTA demonstrates a higher sensitivity for identifying skeletal and vascular lesions. However, vascular occlusions due to postmortem blood clots could be falsely assumed to be vascular lesions. In contrast, conventional autopsy does not detect all bone fractures or the exact source of bleeding. Conventional autopsy provides important information about organ morphology and remains the only way to diagnose a vital vascular occlusion with certitude. CONCLUSION: Overall, PMCTA and conventional autopsy provide comparable findings. However, each technique presents advantages and disadvantages for detecting specific findings. To correctly interpret findings and clearly define the indications for PMCTA, these differences must be understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meta-analysis of prospective studies shows that quantitative ultrasound of the heel using validated devices predicts risk of different types of fracture with similar performance across different devices and in elderly men and women. These predictions are independent of the risk estimates from hip DXA measures.Introduction Clinical utilisation of heel quantitative ultrasound (QUS) depends on its power to predict clinical fractures. This is particularly important in settings that have no access to DXA-derived bone density measurements. We aimed to assess the predictive power of heel QUS for fractures using a meta-analysis approach.Methods We conducted an inverse variance random effects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound [SOS], stiffness index [SI], and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic and major osteoporotic fractures) were reported based on study questions.Results Twenty-one studies including 55,164 women and 13,742 men were included in the meta-analysis with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fracture. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99) and QUI was 1.99 (95% CI 1.49-2.67). There was marked heterogeneity among studies on hip and any clinical fractures but no evidence of publication bias amongst them. Validated devices from different manufacturers predicted fracture risks with similar performance (meta-regression p values > 0.05 for difference of devices). QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip BMD showed a significant and independent association with fracture risk (RR/SD for BUA = 1.34 [95%CI 1.22-1.49]).Conclusions This study confirms that heel QUS, using validated devices, predicts risk of different fracture outcomes in elderly men and women. Further research is needed for more widespread utilisation of the heel QUS in clinical settings across the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Third generation anatomic total shoulder prostheses offer a wide range of adaptability (size, thickness, retroversion and offset of the humeral head, cervico-diaphyseal angle) in order to reproduce anatomy and biomechanics of the shoulder as normal as possible. The large variability of the implants may also induce malposition. Our goal was to analyse the consequences of a humeral head malposition, which is one of the most frequent placement errors. Material and Methods A 3D finite element model of the glenohumeral joint, including the rotator cuff muscles and the deltoid, was used with the Aequalis anatomic prosthesis. Active abduction was simulated. Three humeral head placements were compared : anatomic positioning (A), 5 mm inferior positioning (B), 5 mm superior positioning (C). The effect of humeral head malposition was evaluated through the following quantities : the range of motion free of impingements, the glenohumeral contact pattern, and the stress within the polyethylene and the cement. Results Inferior positioning (B) of the humeral head produced a superior impingement before 90° of abduction, an inferior eccentric contact point on the glenoid, and 165% increase of cement stress. Superior positioning (C) of the humeral head produced a postero-superior eccentric contact point on the glenoid, 300% increase of glenohumeral contact pressure, 450% increase of polyethylene stress, and 207% increase of cement stress. Conclusion Malposition of the humeral head of anatomic prostheses induces biomechanical consequences that may preclude the glenoid survival. Particular attention must be paid to reproduce the humeral anatomy as normal as possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Trabecular Bone Score (TBS, Med-Imaps, France) is an index of bone microarchitecture calculated from antero-posterior spine DXA scan and reported to be associated with fracture in prior case-control studies and in a large prospective study with the Prodigy DXA device. Our aim was to assess the ability of TBS to predict incident fracture and improve the classification of fracture prospectively in the OFELY study.Materials/Methods: TBS was assessed in 564 postmenopausal women (66±8 years old) from the OFELY cohort, who had a spine DXA scan (QDR 4500A, Hologic, USA) between year 2000 and 2001. During a mean follow up of 7.8±1.3 years, 94 women sustained a fragility fracture.Results: At the time of baseline DXA scan, women with incident fracture were significantly older (70±9 vs. 65± 8 years), had a lower spine BMD (T-score: −1.9±1.2 vs. −1.3±1.3, p<0.001) and spine TBS (−3.1%, p<0.001) than women without incident fracture. After adjustment for age, BMI and the presence of prevalent fracture, the magnitude of fracture prediction was similar for spine BMD (OR=1.42 [1.11;1.82] per SD decrease [95% CI]) and TBS (OR=1.34 [1.04;1.74]) but the combination of TBS and spine BMD did not improve fracture prediction. Spine BMD and TBS were both correlated with age (respectively r=−0.17 and −0.49, p<0.001) and correlated together with 39% of TBS explained by spine BMD (r=0.63, p<0.001). When using the WHO classification, 38% of the fractures occurred in osteoporotic (fracture rate=29%), 47% in osteopenic (fracture rate=16%) and 15% in women with T-score >−1 (fracture rate=9%). By classifying our population in tertiles of TBS, we found that 47% of the fractures occurred in the lowest tertile of TBS (fracture rate=23%) and 39% of the fracture that occurred in osteopenic women were in the lowest tertile of TBS.Conclusions: Spine BMD and TBS predicted fractures equally well. The addition of TBS to spine BMD added only limited information on fracture risk prediction in our cohort when considering the all range of BMD. Nevertheless combining the osteopenic T-score and the lowest TBS helped defining a subset of osteopenic women at higher risk of fracture.Disclosure of Interest: None declared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between 1985 and 1990 we treated 11 large segmental bone defects (average 6.7 cm) in ten patients with the Ilizarov technique. Open fractures, type III according to Gustilo, represented the largest group (8 of 11 cases). The average delay before the Ilizarov technique was initiated was 8.9 months. The external fixator was usually maintained for 1 year. Bone regeneration was obtained in every case. Consolidation was not fulfilled with this technique in three cases. The complications observed were one refracture, four leg-length discrepancies (average 1.5 cm), and five axial deformities exceeding 5 degrees. No pin-track infection was observed. In our limited series of four type IIIC open fractures treated by the Ilizarov technique, no patients required amputation. The Ilizarov technique is particularly useful in the treatment of large bone defects, without major complications, especially if there is an adequate initial debridement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sacral insufficiency fractures have been described in association with conditions leading to osteoporosis. No association with spondylolisthesis has been described to date. A 60-year-old patient with known lumbosacral isthmic spondylolisthesis presented with exacerbation of symptoms initially thought to be linked to her known spinal pathology. Plain radiography, computer tomography, MRI and bone scan confirmed the presence of a recent sacral insufficiency fracture with anterior angulation. Conservative treatment resulted in improvement of symptoms after 6 months. Care should be taken when considering older patients for more aggressive treatment if they present with exacerbation of back pain and sciatica in the presence of a pre-existing spondylolisthesis. A suspicion of insufficiency fracture should be raised if risk factors exist and further investigations ordered in particular if plain radiography is normal. Lumbosacral fusion might be inappropriate in this setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basal sliding surfaces in large rockslides are often composed of several surfaces and possess a complex geometry. The exact morphology and location in three dimensions of the sliding surface remains generally unknown, in spite of extensive field and subsurface investigations, such as those at the Åknes rockslide (western Norway). This knowledge is crucial for volume estimations, failure mechanisms, and numerical slope stability modeling. This paper focuses on the geomorphologic characterization of the basal sliding surface of a postglacial rockslide scar in the vicinity of Åknes. This scar displays a stepped basal sliding surface formed by dip slopes of the gneiss foliation linked together by steeply dipping fractures. A detailed characterization of the rockslide scar by means of high-resolution digital elevation models permits statistical parameters of dip angle, spacing, persistence, and roughness of foliation surfaces and step fractures to be obtained. The characteristics are used for stochastic simulations of stepped basal sliding surfaces at the Åknes rockslide. These findings are compared with previous models based on geophysical investigations. This study discusses the investigation of rockslide scars and rock outcrops for a better understanding of potential rockslides. This work identifies possible basal sliding surface locations, which is a valuable input for volume estimates, design and location of monitoring instrumentation, and numerical slope stability modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study energy and protein balances in elderly patients after surgery, spontaneous energy and protein intake and resting energy expenditure (REE) were measured in 20 elderly female patients with a femoral neck fracture (mean age 81 +/- 4, SD, range 74-87 years; weight 53 +/- 8, range 42-68 kg) during a 5-6 day period following surgery. REE, measured over 20-40 min by indirect calorimetry using a ventilated canopy, averaged 0.98 +/- 0.15 kcal/min on day 3 and decreased to 0.93 +/- 0.15 kcal/min on day 8-9 postsurgery (p less than 0.02). REE was positively correlated with body weight (r = 0.69, p less than 0.005). Mean REE extrapolated to 24 hr (24-REE) was 1283 +/- 194 kcal/day. Mean daily food energy intake measured over the 5-day follow-up period was 1097 +/- 333 kcal/day and was positively correlated with 24-REE (r = 0.50, p less than 0.05). Daily energy balance was -235 +/- 351 kcal/day on day 3 (p less than 0.01 vs zero) and -13 +/- 392 kcal/day on day 8-9 postsurgery (NS vs zero) with a mean over the study period of -185 +/- 289 kcal/day (p less than 0.01 vs zero). When an extra 100 kcal/day was allowed for the energy cost of physical activity, mean daily energy balance over the 5-day study period was calculated to be -285 +/- 289 kcal/day (p less than 0.01 vs zero). Measurements of total 24-hr urinary nitrogen (N) excretion were obtained in a subgroup of 14 patients.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone micro-architecture based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. Method: The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goals of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. Results: We included 631 women: mean age 67.4±6.7 y, BMI 26.1±4.6, mean lumbar spine BMD 0.943±0.168 (T-score -1.4 SD), TBS 1.271±0.103. As expected, correlation between BMD and site matched TBS is low (r2=0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2- 2.5), 1.6 (1.2-2.1), 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < -2.5 SD or a TBS < 1.200. If we combine a BMD < -2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been miss-classified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS & HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unstable rock slope, Stampa, above the village of Flåm, Norway, shows signs of both active and postglacial gravitational deformation over an area of 11 km2. Detailed structural field mapping, annual differential Global Navigation Satellite System (GNSS) surveys, as well as geomorphic analysis of high-resolution digital elevation models based on airborne and terrestrial laser scanning indicate that slope deformation is complex and spatially variable. Numerical modeling was used to investigate the influence of former rockslide activity and to better understand the failure mechanism. Field observations, kinematic analysis and numerical modeling indicate a strong structural control of the unstable area. Based on the integration of the above analyses, we propose that the failure mechanism is dominated by (1) a toppling component, (2) subsiding bilinear wedge failure and (3) planar sliding along the foliation at the toe of the unstable slope. Using differential GNSS, 18 points were measured annually over a period of up to 6 years. Two of these points have an average yearly movement of around 10 mm/year. They are located at the frontal cliff on almost completely detached blocks with volumes smaller than 300,000 m3. Large fractures indicate deep-seated gravitational deformation of volumes reaching several 100 million m3, but the movement rates in these areas are below 2 mm/year. Two different lobes of prehistoric rock slope failures were dated with terrestrial cosmogenic nuclides. While the northern lobe gave an average age of 4,300 years BP, the southern one resulted in two different ages (2,400 and 12,000 years BP), which represent most likely multiple rockfall events. This reflects the currently observable deformation style with unstable blocks in the northern part in between Joasete and Furekamben and no distinct blocks but a high rockfall activity around Ramnanosi in the south. With a relative susceptibility analysis it is concluded that small collapses of blocks along the frontal cliff will be more frequent. Larger collapses of free-standing blocks along the cliff with volumes > 100,000 m3, thus large enough to reach the fjord, cannot be ruled out. A larger collapse involving several million m3 is presently considered of very low likelihood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporotic fracture (OF) is one of the major causes of morbidity and mortality in industrialized countries. Switzerland is among the countries with the greatest risk. Our aim was (1) to calculate the FRAX(®) in a selected Swiss population the day before the occurrence of an OF and (2) to compare the results with the proposed Swiss FRAX(®) thresholds. The Swiss Association Against Osteoporosis proposed guidelines for the treatment of osteoporosis based on age-dependent thresholds. To identify a population at a very high risk of osteoporotic fracture, we included all consecutive patients in the active OF pathway cohort from the Lausanne University Hospital, Switzerland. FRAX(®) was calculated with the available data the day before the actual OF. People with a FRAX(®) body mass index (BMI) or a FRAX(®) (bone mineral density) BMD lower than the Swiss thresholds were not considered at high risk. Two-hundred thirty-seven patients were included with a mean age of 77.2 years, and 80 % were female. Major types of fracture included hip (58 %) and proximal humerus (25 %) fractures. Mean FRAX(®) BMI values were 28.0, 10.0, 13.0, 26.0, and 37.0 % for age groups 50-59, 60-69, 70-79, and 80-89 years old, respectively. Fifty percent of the population was not considered at high risk by the FRAX(®) BMI. FRAX(®) BMD was available for 95 patients, and 45 % had a T score < -2.5 standard deviation. Only 30 % of patients with a normal or osteopenic BMD were classified at high risk by FRAX(®) BMD. The current proposed Swiss thresholds were not able to classify at high risk in 50 to 70 % of the studied population the day before a major OF.