214 resultados para DENDRITIC BRANCHING FEATURES
Resumo:
Objectifs. - Le DSM-5 donne une définition du symptôme psychotique indépendante de tout concept depsychose. Chez les patients dépressifs, la présence d'hallucination ou d'idée délirante, quelle que soit leurforme clinique, conduit en principe à diagnostiquer une dépression psychotique et à prescrire des neurolep-tiques. Les symptômes psychotiques sont subdivisés par le DSM en « congruents » ou « non congruents » àl'humeur. Nous discutons de la pertinence d'une catégorie de symptômes psychotiques « atypiques », peuévocateurs d'une psychose au sens classique du terme. Méthode. - Discussion de la définition opérationnelle des symptômes psychotiques du DSM, étude d'unesérie de 16 patients chez qui un diagnostic de dépression psychotique a été posé. Résultats. - Sur les 16 patients, deux seulement présentaient des symptômes psychotiques classiques, évo-cateurs d'une psychose. Chez les autres, le diagnostic reposait sur la présence de symptômes très atypiques,comme des hallucinations visuelles par exemple.
Resumo:
BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.
Resumo:
Major histocompatibility complex (MHC) molecules are of crucial importance for the immune system to recognize and defend the body against external attacks. Foreign antigens are presented by specialized cells, called antigen presenting cells, to T lymphocytes in the context of MHC molecules, thereby inducing T cell activation. In addition, MHC molecules are essential for Natural Killer (NK) cell biology, playing a role in NK cell education and activation. Recently, the NOD-like receptor (NLR) family member NLRC5 (NLR caspase recruitment domain containing protein 5) was found to act as transcriptional regulator of MHC class I, in particular in T and NK cells. Its role in MHC class I expression is however minor in dendritic cells (DCs). This raised the question of whether inflammatory conditions, which augment the levels of NLRC5 in DCs, could increase its contribution to MHC class I expression. Our work shows that MHC class I transcript and intracellular levels depend on NLRC5, while its role in MHC class I surface expression is instead negligible. We describe however a general salvage mechanism that enables cells with low intracellular MHC class I levels to nevertheless maintain relatively high MHC class I on the cell surface. In addition, we lack a thorough understanding of NLRC5 target gene specificity and mechanism of action. Our work delineates the unique consensus sequence in MHC class I promoters required for NLRC5 recruitment and pinpoints conserved features conferring its specificity. Furthermore, through genome-wide analyses, we confirm that NLRC5 regulates classical MHC class I genes and identify novel target genes all encoding non-classical MHC class I molecules exerting an array of functions in immunity and tolerance. We finally asked why a dedicated factor co-regulates MHC class I expression specifically in T and NK lymphocytes. We show that deregulated NLRC5 expression affects the education of NK cells and alters the crosstalk between T and NK cells, leading to NK cell-mediated killing of T lymphocytes. Altogether this thesis work brings insights into molecular and physiological aspects of NLRC5 function, which might help understand certain aspects of immune responses and disorders. -- Les molécules du complexe majeur d'histocompatibilité (CMH) sont essentielles au système immunitaire pour l'initiation de la réponse immunitaire. En effet, l'activation des lymphocytes T nécessite la reconnaissance d'un antigène étranger présenté par les cellules présentatrices d'antigènes sur une molécule du CMH. Les molécules du CMH ont également un rôle fondamental pour la fonction des cellules Natural Killer (NK) puisqu'elles sont nécessaires à leur processus d'éducation et d'activation. Récemment, NLRC5 (NLR caspase recruitment domain containing protein 5), un membre de la famille des récepteurs de type NOD (NLRs), a été décrit comme un facteur de transactivation de l'expression des gènes du CMH de classe I. A l'état basai, cette fonction transcriptionnelle est essentielle dans les lymphocytes T et NK, alors que ce rôle reste mineur pour l'expression des molécules du CMH de classe I dans les cellules dendritiques (DCs). Dans des conditions inflammatoires, l'expression de NLRC5 augmente dans les DCs. Notre travail démontre que, dans ces conditions, les transcrits et les niveaux intracellulaires des molécules du CMH de classe I augmentent aussi d'une façon dépendante de NLRC5. A contrario, le rôle de NLRC5 sur les niveaux de molécules de surface reste minoritaire. Cette observation nous a conduits à l'identification d'un mécanisme général de compensation qui permet aux cellules de maintenir des niveaux relativement élevés de molécules de CMH de class I à leur surface malgré de faibles niveaux intracellulaires. De plus, il semblait nécessaire de s'orienter vers une approche plus globale afin de déterminer l'étendue de la fonction transcriptionnelle de NLRC5. Par une approche du génome entier, nous avons pu décrire une séquence consensus conservée présente dans les promoteurs des gènes du CMH de classe I, sur laquelle NLRC5 est spécifiquement recruté. Nous avons pu également identifier de nouveaux gènes cibles codant pour des molécules de CMH de classe I non classiques impliqués dans l'immunité et la tolérance. Finalement, nous nous sommes demandé quel est l'intérêt d'avoir un facteur transcriptionnel, en l'occurrence NLRC5, qui orchestre l'expression du CMH de classe I dans les lymphocytes T et NK. Nous montrons que la dérégulation de l'expression de NLRC5 affecte l'éducation des cellules NK et conduit à la mort cellulaire des lymphocytes T médiée par les cellules NK. Dans l'ensemble ce travail de thèse contribue à la caractérisation du rôle de NLRC5, tant au niveau moléculaire que physiologique, ce qui présente un intérêt dans le cadre de la compréhension de certains aspects physiopathologique de la réponse immunitaire.
Resumo:
Thymic stromal lymphopoietin (TSLP) is a mucosal tissue-associated cytokine that has been widely studied in the context of T helper type 2 (Th2)-driven inflammatory disorders. Although TSLP is also produced upon viral infection in vitro, the role of TSLP in antiviral immunity is unknown. In this study we report a novel role for TSLP in promoting viral clearance and virus-specific CD8+ T-cell responses during influenza A infection. Comparing the immune responses of wild-type and TSLP receptor (TSLPR)-deficient mice, we show that TSLP was required for the expansion and activation of virus-specific effector CD8+ T cells in the lung, but not the lymph node. The mechanism involved TSLPR signaling on newly recruited CD11b+ inflammatory dendritic cells (DCs) that acted to enhance interleukin-15 production and expression of the costimulatory molecule CD70. Taken together, these data highlight the pleiotropic activities of TSLP and provide evidence for its beneficial role in antiviral immunity.
Resumo:
Adjuvants are vaccine additives that stimulate the immune system without having any specific antigenic effect of itself. In this study we show that alum adjuvant induces the release of IL-1beta from macrophages and dendritic cells and that this is abrogated in cells lacking various NALP3 inflammasome components. The NALP3 inflammasome is also required in vivo for the innate immune response to OVA in alum. The early production of IL-1beta and the influx of inflammatory cells into the peritoneal cavity is strongly reduced in NALP3-deficient mice. The activation of adaptive cellular immunity to OVA-alum is initiated by monocytic dendritic cell precursors that induce the expansion of Ag-specific T cells in a NALP3-dependent way. We propose that, in addition to TLR stimulators, agonists of the NALP3 inflammasome should also be considered as vaccine adjuvants.
Resumo:
Progressive pseudorheumatoid dysplasia (PPRD) is a genetic, non-inflammatory arthropathy caused by recessive loss of function mutations in WISP3 (Wnt1-inducible signaling pathway protein 3; MIM 603400), encoding for a signaling protein. The disease is clinically silent at birth and in infancy. It manifests between the age of 3 and 6 years with joint pain and progressive joint stiffness. Affected children are referred to pediatric rheumatologists and orthopedic surgeons; however, signs of inflammation are absent and anti-inflammatory treatment is of little help. Bony enlargement at the interphalangeal joints progresses leading to camptodactyly. Spine involvement develops in late childhood and adolescence leading to short trunk with thoracolumbar kyphosis. Adult height is usually below the 3rd percentile. Radiographic signs are relatively mild. Platyspondyly develops in late childhood and can be the first clue to the diagnosis. Enlargement of the phalangeal metaphyses develops subtly and is usually recognizable by 10 years. The femoral heads are large and the acetabulum forms a distinct "lip" overriding the femoral head. There is a progressive narrowing of all articular spaces as articular cartilage is lost. Medical management of PPRD remains symptomatic and relies on pain medication. Hip joint replacement surgery in early adulthood is effective in reducing pain and maintaining mobility and can be recommended. Subsequent knee joint replacement is a further option. Mutation analysis of WISP3 allowed the confirmation of the diagnosis in 63 out of 64 typical cases in our series. Intronic mutations in WISP3 leading to splicing aberrations can be detected only in cDNA from fibroblasts and therefore a skin biopsy is indicated when genomic analysis fails to reveal mutations in individuals with otherwise typical signs and symptoms. In spite of the first symptoms appearing in early childhood, the diagnosis of PPRD is most often made only in the second decade and affected children often receive unnecessary anti-inflammatory and immunosuppressive treatments. Increasing awareness of PPRD appears to be essential to allow for a timely diagnosis. © 2012 Wiley Periodicals, Inc.
Resumo:
Les muqueuses respiratoires, genitales et digestives sont continuellement exposées aux antigènes de l?alimentation, à la flore intestinale et aux pathogènes. Cela implique une activité immunologique intense et finement régulée dans ces tissus. On admet que la modulation de ces réponses immunitaires muqueuses s?effectue dans des organes sentinels spécifiques appelés o-MALT (organized mucosal associated lymphoid tissues). Ces processus de modulation et la biologie de ces sites immuno-inducteurs sont peu connus. Ceci est pourtant d?une grande relevance si l?on veut faire un design rationnel de drogues et de vaccins muqueux. Dans l?intestin grèle, ces organes sont composés de follicules multiples et sont appelés plaques de Peyer. Ils sont constitués de follicules enrichis en cellules B comprenant ou non un centre germinatif, de regions interfolliculaires comprenant des cellules T, et d?une région en d ome riche en cellules dendritiques, cellules B naives et cellules T CD4+, surmontée par un epithelium specialisé, le FAE (epithelium associé aux follicules). Le FAE contient des cellules M spécialisées dans le transport de macromolécules et micro-organismes de la lumière intestinale au tissu lymphoide sous-jacent. Ce transport des antigènes est une condition obligatoire pour induire une réponse immunitaire. Les cellules du FAE, outre les cellules M, expriment un programme de différenciation distinct de celui des cellules associées aux villosités. Ceci est characterisé par une baisse des fonctions digestives et de défenses, et l?expression constitutive des chimiokines: CCL20 et CCL25. Le but de l?étude présentée ici est de rechercher les facteurs cellulaires et/ou moléculaire responsables de cette différenciation. Certaines études ont démontré l?importance du contact entre le compartiment mésenchymateux et l?épithelium pour la morphogenèse de ce dernier. En particulier, les molécules de la matrice extracellulaire peuvent activer des gènes clefs qui, à leur tour, vont controler l?adhésion et la differenciation cellulaire. Dans l?intestin, les cellules mésenchymateuses différencient en myofibroblastes qui participent à l?élaboration de la matrice extracellulaire. Dans cette étude, nous avons décrit les différences d?expression de molécules de la matrices sous le FAE et les villosités. Nous avons également montré une absence de myofibroblastes sous le FAE. Suite à plusieurs évidences expérimentales, certains ont proposé une influence des composés présents dans la lumière sur la différenciation et/ou la maturation des plaques de Peyer. La chimiokine CCL20, capable de recruter des cellules initiatrices de la réponse immunitaire, constitue notre seul marqueur positif de FAE. Nous avons pu montrer que la flagelline, un composé du flagelle bactérien, était capable d?induire l?expression de CCL20 in vitro et in vivo. Cet effet n?est pas limité aux cellules du FAE mais est observé sur l?ensemble de l?épithelium intestinal. Molecular mechanisms of FAE differenciation. La signalement induit par la lymphotoxine ß est critique pour l?organogenèse des plaques de Peyer, car des souris déficientes pour cette molécules ou son récepteur n?ont ni plaque de Peyer, ni la plupart des ganglions lymphatiques. Nous avons obtenus plusieurs évidences que la lymphotoxine ß était impliquée dans la régulation du gène CCL20 in vitro et in vivo.<br/><br/>Mucosal surfaces of the respiratory, genital and digestive systems are exposed to food antigens, normal bacterial flora and oral pathogens. This justifies an intense and tuned immunological activity in mucosal tissues. The modulation of immune responses in the mucosa is thought to occur in specific sentinel sites, the organized mucosa associated lymphoid tissues (o-MALT). This immune modulation and the biology of these immune-inductive sites are poorly understood but highly important and relevant in the case of drugs and vaccines design. In the small intestine, these organs (gut associated lymphoid tissue : GALT) consists of single or multiple lymphoid follicles, the so-called Peyer?s patches (PP), with typical B cell-enriched follicles and germinal centers, inter-follicular T cell areas, and a dome region enriched in dendritic cells, naive B cells, and CD4+ T cells under a specialized follicle associated epithelium (FAE). To trigger protective immunity, antigens have to cross the mucosal epithelial barrier. This is achieved by the specialized epithelial M cells of the FAE that are able to take up and transport macromolecules and microorganisms from the environment into the underlying organized lymphoid tissue. The ontogeny of M cells remains controversial: some data are in favor of a distinct cell lineage, while others provide evidence for the conversion of differentiated enterocytes into M cells. In this study we mapped the proliferative, M cells and apoptotic compartments along the FAE. Enterocytes acquire transient M cell features as they leave the crypt and regain enterocyte properties as they move towards the apoptotic compartment at the apex of the FAE, favouring the hypothesis of a plastic phenotype. The follicle-associated epithelium (FAE) is found exclusively over lymphoid follicles in mucosal tissues, including Peyer?s patches. The enterocytes over Peyer?s patches express a distinct phenotype when compared to the villi enterocytes, characterized by the down regulation of digestive and defense functions and the constitutive expression of chemokines, i.e. CCL20 and CCL25. The purpose of this study was to investigate and identify the potential cells and/or molecules instructing FAE differentiation. Contact between the epithelial and the mesenchymal cell compartment is required for gut morphogenesis. Extracellular matrix molecules (ECM) can activate key regulatory genes which in turn control cell adhesion and differentiation. In the gut, mesenchymal cells differentiate into myofibroblats that participate to the elaboration of ECM. We have described a differential expression of extracellular matrix components under the FAE, correlating with the absence of subepithelial myofibroblats. Molecular mechanisms of FAE differenciation. Different studies proposed an influence of the luminal compartment in the differentiation and/or the maturation of PP. CCL20, a chemokine able to recruit cells that initiate adaptive immunity constitutes our first positive FAE molecular marker. We have shown that CCL20 gene expression is inducible in vitro and in vivo in intestinal epithelium by flagellin, a component of bacterial flagella. This effect was not restricted to the FAE. Lymphotoxin ß (LTß) signaling is critical for PPs organogenesis as LT deficient mice as well as LTß-receptor-/- mice lack PPs and most of the lymph nodes (LN). The continuous signaling via LTßR-expressing cells appears necessary for the maintenance throughout the life of PP architecture. We obtained in vitro and in vivo evidence that LTß signalling is involved in CCL20 gene expression.
Resumo:
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.
Between Immunology And Tolerance: Controlling Immune Responses Employing Tolerogenic Dendritic Cells
Resumo:
Dendritic cells (DCs) are the most efficient antigen presenting cells, they provide co-stimulation, are able to secrete various proinflammatory cytokines and therefore play a pivotal role in shaping adaptive immune responses. Moreover, they are important for the promotion and maintenance of central and peripheral tolerance through several mechanisms like the induction of anergy or apoptosis in effector T cells or by promoting regulatory T cells. The murine CD8α+ (MuTu) dendritic cell line was previously derived and described in our laboratory. The MuTu cell line has been shown to maintain phenotypical and functional characteristics of endogenous CD8α+ DCs. They are able to cross-present exogenous antigens to CD8+ T cells and produce interleukin (IL-) 12 upon engagement of Toll like receptors. The cell line constitutes an infinite source of homogenous, phenotypically well-defined dendritic cells. This allows us to investigate the role and potential of specific molecules in the induction as well as regulation of immune responses by DCs in a rational and standardized way. In a first project the MuTu dendritic cell line was transduced in order to stably express the immunosuppressive molecules IL-10, IL-35 or the active form of TGF-β (termed IL-10+DC, IL-35+DC or actTGFβ+DC). We investigated the capability of these potentially suppressive or tolerogenic dendritic cell lines to induce immune tolerance and explore the mechanisms behind tolerance induction. The expression of TGF-β by the DC line did not affect the phenotype of the DCs itself. In contrast, IL-10+ and IL-35+DCs were found to exhibit lower expression of co-stimulatory molecules and MHC class I and II, as well as reduced secretion of pro-inflammatory cytokines upon activation. In vitro co-culture with IL-35+, IL10+ or active TGFβ+ DCs interfered with function and proliferation of CD4+ and CD8+ T cells. Furthermore, IL-35 and active TGF-β expressing DC lines induced regulatory phenotype on CD4+ T cells in vitro without or with expression of Foxp3, respectively. In different murine cancer models, vaccination with IL-35 or active TGF-β expressing DCs resulted in faster tumor growth. Interestingly, accelerated tumor growth could be observed when IL-35-expressing DCs were injected into T cell-deficient RAG-/- mice. IL-10expressing DCs however, were found to rather delay tumor growth. Besides the mentioned autocrine effects of IL-35 expression on the DC line itself, we surprisingly observed that the expression of IL-35 or the addition of IL-35 containing medium enhances neutrophil survival and induces proliferation of endothelial cells. Our findings indicate that the cytokine IL-35 might not only be a potent regulator of adaptive immune responses, but it also implies IL-35 to mediate diverse effects on an array of cellular targets. This abilities make IL-35 a promising target molecule not only for the treatment of auto-inflammatory disease but also to improve anti-cancer immunotherapies. Indeed, by applying active TGFβ+ in murine autoimmune encephalitis we were able to completely inhibit the development of the disease, whereas IL-35+DCs reduced disease incidence and severity. Furthermore, the preventive transfer of IL-35+DCs delayed rejection of transplanted skin to the same extend as the combination of IL-10/actTGF-β expressing DCs. Thus, the expression of a single tolerogenic molecule can be sufficient to interfere with the adequate activation and function of dendritic cells and of co-cultured T lymphocytes. The respective mechanisms of tolerance induction seem to be different for each of the investigated molecule. The application of a combination of multiple tolerogenic molecules might therefore evoke synergistic effects in order to overcome (auto-) immunity. In a second project we tried to improve the immunogenicity of dendritic cell-based cancer vaccines using two different approaches. First, the C57BL/6 derived MuTu dendritic cell line was genetically modified in order to express the MHC class I molecule H-2Kd. We hypothesized that the expression of BALB/c specific MHC class I haplotype (H-2Kd) should allow the priming of tumor-specific CD8+ T cells by the otherwise allogeneic dendritic cells. At the same time, the transfer of these H-2Kd+ DCs into BALB/c mice was thought to evoke a strong inflammatory environment that might act as an "adjuvant", helping to overcome tumor induced immune suppression. Using this so called "semi-allogeneic" vaccination approach, we could demonstrate that the delivery of tumor lysate pulsed H-2Kd+ DCs significantly delayed tumor growth when compared to autologous or allogeneic vaccination. However, we were not able to coherently elucidate the cellular mechanisms underlying the observed effect. Second, we generated MuTu DC lines which stably express the pro-inflammatory cytokines IL-2, IL-12 or IL-15. We investigated whether the combination of DC vaccination and local delivery of pro-inflammatory cytokines might enhance tumor specific T cell responses. Indeed, we observed an enhanced T cell proliferation and activation when they were cocultured in vitro with IL-12 or IL-2-expressing DCs. But unfortunately we could not observe a beneficial or even synergistic impact on tumor development when cytokine delivery was combined with semi-allogeneic DC vaccination.
Resumo:
INTRODUCTION: Dendritic cells (DCs) are the most important antigen-presenting cell population for activating antitumor T-cell responses; therefore, they offer a unique opportunity for specific targeting of tumors. AREAS COVERED: We will discuss the critical factors for the enhancement of DC vaccine efficacy: different DC subsets, types of in vitro DC manufacturing protocol, types of tumor antigen to be loaded and finally different adjuvants for activating them. We will cover potential combinatorial strategies with immunomodulatory therapies: depleting T-regulatory (Treg) cells, blocking VEGF and blocking inhibitory signals. Furthermore, recommendations to incorporate these criteria into DC-based tumor immunotherapy will be suggested. EXPERT OPINION: Monocyte-derived DCs are the most widely used DC subset in the clinic, whereas Langerhans cells and plasmacytoid DCs are two emerging DC subsets that are highly effective in eliciting cytotoxic T lymphocyte responses. Depending on the type of tumor antigens selected for loading DCs, it is important to optimize a protocol that will generate highly potent DCs. The future aim of DC-based immunotherapy is to combine it with one or more immunomodulatory therapies, for example, Treg cell depletion, VEGF blockage and T-cell checkpoint blockage, to elicit the most optimal antitumor immunity to induce long-term remission or even cure cancer patients.
Resumo:
BACKGROUND: Pneumonia is the biggest cause of deaths in young children in developing countries, but early diagnosis and intervention can effectively reduce mortality. We aimed to assess the diagnostic value of clinical signs and symptoms to identify radiological pneumonia in children younger than 5 years and to review the accuracy of WHO criteria for diagnosis of clinical pneumonia. METHODS: We searched Medline (PubMed), Embase (Ovid), the Cochrane Database of Systematic Reviews, and reference lists of relevant studies, without date restrictions, to identify articles assessing clinical predictors of radiological pneumonia in children. Selection was based on: design (diagnostic accuracy studies), target disease (pneumonia), participants (children aged <5 years), setting (ambulatory or hospital care), index test (clinical features), and reference standard (chest radiography). Quality assessment was based on the 2011 Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. For each index test, we calculated sensitivity and specificity and, when the tests were assessed in four or more studies, calculated pooled estimates with use of bivariate model and hierarchical summary receiver operation characteristics plots for meta-analysis. FINDINGS: We included 18 articles in our analysis. WHO-approved signs age-related fast breathing (six studies; pooled sensitivity 0·62, 95% CI 0·26-0·89; specificity 0·59, 0·29-0·84) and lower chest wall indrawing (four studies; 0·48, 0·16-0·82; 0·72, 0·47-0·89) showed poor diagnostic performance in the meta-analysis. Features with the highest pooled positive likelihood ratios were respiratory rate higher than 50 breaths per min (1·90, 1·45-2·48), grunting (1·78, 1·10-2·88), chest indrawing (1·76, 0·86-3·58), and nasal flaring (1·75, 1·20-2·56). Features with the lowest pooled negative likelihood ratio were cough (0·30, 0·09-0·96), history of fever (0·53, 0·41-0·69), and respiratory rate higher than 40 breaths per min (0·43, 0·23-0·83). INTERPRETATION: Not one clinical feature was sufficient to diagnose pneumonia definitively. Combination of clinical features in a decision tree might improve diagnostic performance, but the addition of new point-of-care tests for diagnosis of bacterial pneumonia would help to attain an acceptable level of accuracy. FUNDING: Swiss National Science Foundation.
Resumo:
Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase COTYLEDON VASCULAR PATTERN 2 (CVP2), but not in its homolog CVP2-LIKE 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, CLAVATA3/EMBRYO SURROUNDING REGION 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture.
Resumo:
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive molecule expressed in some subsets of normal and neoplastic cells. Mature human dendritic cells (DCs) have been shown to express IDO1, but little is known about its expression and function during DC differentiation from bone marrow hematopoietic stem/progenitor cells (HSPCs). Here, we show that during in vitro differentiation along the myeloid DC lineage, CD34(+) HSPCs acquire IDO1 expression, which acts in a tolerogenic manner by inducing a population of fully functional CD4(+)CD25(+) FOXP3(+) T-regulatory cells. Phenotypically, CD1a(+)CD14(-) HPSC-derived DCs expressed IDO1, langerin, CD11b, and CD1c. Cell-sorting experiments demonstrated that IDO1 expression is found in a subset of CD1a(+)CD14(-)langerin(+) cells, expressing CD103, which is capable of inducing T-regulatory cells in an IDO1-dependent manner. In conclusion, DC differentiation from CD34(+) HSPCs results in the expression of a functionally active IDO1 protein in CD1a(+)langerin(+), CD103-expressing DCs. These data point toward IDO1 expression as part of a tolerogenic signature during DC development.
Resumo:
Meckel-Gruber Syndrome is a rare autosomal recessive lethal ciliopathy characterized by the triad of cystic renal dysplasia, occipital encephalocele and postaxial polydactyly. We present the largest population-based epidemiological study to date using data provided by the European Surveillance of Congenital Anomalies (EUROCAT) network. The study population consisted of 191 cases of MKS identified between January 1990 and December 2011 in 34 European registries. The mean prevalence was 2.6 per 100 000 births in a subset of registries with good ascertainment. The prevalence was stable over time, but regional differences were observed. There were 145 (75.9%) terminations of pregnancy after prenatal diagnosis, 13 (6.8%) fetal deaths, 33 (17.3%) live births. In addition to cystic kidneys (97.7%), encephalocele (83.8%) and polydactyly (87.3%), frequent features include other central nervous system anomalies (51.4%), fibrotic/cystic changes of the liver (65.5% of cases with post mortem examination) and orofacial clefts (31.8%). Various other anomalies were present in 64 (37%) patients. As nowadays most patients are detected very early in pregnancy when liver or kidney changes may not yet be developed or may be difficult to assess, none of the anomalies should be considered obligatory for the diagnosis. Most cases (90.2%) are diagnosed prenatally at 14.3±2.6 (range 11-36) gestational weeks and pregnancies are mainly terminated, reducing the number of LB to one-fifth of the total prevalence rate. Early diagnosis is important for timely counseling of affected couples regarding the option of pregnancy termination and prenatal genetic testing in future pregnancies.