263 resultados para CONGENITAL PTOSIS
Resumo:
Objective: Aim of post operative treatments after cardiac surgery is to avoid low cardiac output syndrome (LCOS). Levosimendan, a new inotrope agent, has been demonstrated in adult patient to be an effective treatment for this purpose when classical therapy is not effective. It shows a positive effect on cardiac output, with fewer adverse effects and lower mortality than with dopamine. There is very few data on its benefit in the paediatric population. The aim of this study is to evaluate the effect of levosimendan in cardiac children with LCOS.Methods: Retrospective analysis of 25 children hospitalised in our PICU after cardiac surgery that demonstrated LCOS not responding to classical catecholamine therapy and who received levosimendan as rescue. LCOS parameters like urine output, mixed venous oxygen saturation (SvO2), arterio-venous differences in CO2 (AVCO2) and plasmatic lactate were compared before therapy and at 12, 24, 48 and 72 hours after the beginning of the levosimendan infusion. We also analyzed the effect on the utilisation of amines (amine score), adverse events and mortality.Results: After the beginning of levosimendan infusion, urine output (3.1 vs 5.3ml/kg/h, p=0.003) and SVO2 (56 vs 64mmHg, p=0.001) increase significantly during first 72 hours and at the same time plasmatic lactate (2.6 vs 1.4 mmole/l, p<0.001), AVCO2 (11 vs 8 mmHg, p=0.002) and amine score (63 vs 39, p=0.007) decrease significantly. No side effects were noted during administration of levosimendan. In this group of patients, mortality was 0%.Conclusion: Levosimendan is an effective treatment in children after congenital heart surgery. Our study, with a greater sample of patient than other studies, confirms the improvement of cardiac output already shown in other paediatric studies.
Resumo:
Background: congenital and acquired airway anomalies represent a relatively common albeit challenging problem in a national tertiary care hospital. In the past, most of these patients were sent to foreign Centres because of the lack of local experience in reconstructive surgery of the paediatric airway. In 2009, a dedicated team was established at our Institute. Gaslini's Tracheal Team includes different professionals, namely anaesthetists, intensive care specialists, neonatologists, pulmonologists, radiologists, and ENT, paediatric, and cardiovascular surgeons. The aim of this project was to provide these multidisciplinary patients, at any time, with intensive care, radiological investigations, diagnostic and operative endoscopy, reconstructive surgery, ECMO or cardiopulmonary bypass. Aim of this study is to present the results of the first year of airway reconstructive surgery activity of the Tracheal Team.Methods: between September 2009 and December 2010, 97 patients were evaluated or treated by our Gaslini Tracheal Team. Most of them were evaluated by both rigid and flexible endoscopy. In this study we included 8 patients who underwent reconstructive surgery of the airways. Four of them were referred to our centre or previously treated surgically or endoscopically without success in other Centres.Results: Eight patients required 9 surgical procedures on the airway: 4 cricotracheal resections, 2 laryngotracheoplasties, 1 tracheal resection, 1 repair of laryngeal cleft and 1 foreign body removal with cardiopulmonary bypass through anterior tracheal opening. Moreover, in 1 case secondary aortopexy was performed. All patients achieved finally good results, but two of them required two surgeries and most required endoscopic manoeuvres after surgery. The most complex cases were the ones who had already been previously treated.Conclusions: The treatment of paediatric airway anomalies requires a dedicated multidisciplinary approach and a single tertiary care Centre providing rapid access to endoscopic and surgical manoeuvres on upper and lower airways and the possibility to start immediately cardiopulmonary bypass or ECMO.The preliminary experience of the Tracheal Team shows that good results can be obtained with this multidisciplinary approach in the treatment of complicated cases. The centralization of all the cases in one or few national Centres should be considered.
Resumo:
To determine the frequency and predictors of sleep disorders in children with cerebral palsy (CP) we analyzed the responses of 173 parents who had completed the Sleep Disturbance Scale for Children. The study population included 100 males (57.8%) and 73 females (42.2%; mean age 8y 10mo [SD 1y 11mo]; range 6y-11y 11mo). Eighty-three children (48.0%) had spastic diplegia, 59 (34.1%) congenital hemiplegia, 18 (10.4%) spastic quadriplegia, and 13 (7.5%) dystonic/dyskinetic CP. Seventy-three children (42.2%) were in Gross Motor Function Classification System Level I, 33 (19.1%) in Level II, 30 (17.3%) in Level III, 23 (13.3%) in Level IV, and 14 (8.1%) in Level V. Thirty children (17.3%) had epilepsy. A total sleep problem score and six factors indicative of the most common areas of sleep disorder in childhood were obtained. Of the children in our study, 23% had a pathological total sleep score, in comparison with 5% of children in the general population. Difficulty in initiating and maintaining sleep, sleep-wake transition, and sleep breathing disorders were the most frequently identified problems. Active epilepsy was associated with the presence of a sleep disorder (odds ratio [OR]=17.1, 95% confidence interval [CI] 2.5-115.3), as was being the child of a single-parent family (OR=3.9, 95% CI 1.3-11.6). Disorders of initiation and maintenance of sleep were more frequent in children with spastic quadriplegia (OR=12.9, 95% CI 1.9-88.0), those with dyskinetic CP (OR=20.6, 95% CI 3.1-135.0), and those with severe visual impairment (OR=12.5, 95% CI 2.5-63.1). Both medical and environmental factors seem to contribute to the increased frequency of chronic sleep disorders in children with CP.
Resumo:
As part of a collaborative project on the epidemiology of craniofacial anomalies, funded by the National Institutes for Dental and Craniofacial Research and channeled through the Human Genetics Programme of the World Health Organization, the International Perinatal Database of Typical Orofacial Clefts (IPDTOC) was established in 2003. IPDTOC is collecting case-by-case information on cleft lip with or without cleft palate and on cleft palate alone from birth defects registries contributing to at least one of three collaborative organizations: European Surveillance Systems of Congenital Anomalies (EUROCAT) in Europe, National Birth Defects Prevention Network (NBDPN) in the United States, and International Clearinghouse for Birth Defects Surveillance and Research (ICBDSR) worldwide. Analysis of the collected information is performed centrally at the ICBDSR Centre in Rome, Italy, to maximize the comparability of results. The present paper, the first of a series, reports data on the prevalence of cleft lip with or without cleft palate from 54 registries in 30 countries over at least 1 complete year during the period 2000 to 2005. Thus, the denominator comprises more than 7.5 million births. A total of 7704 cases of cleft lip with or without cleft palate (7141 livebirths, 237 stillbirths, 301 terminations of pregnancy, and 25 with pregnancy outcome unknown) were available. The overall prevalence of cleft lip with or without cleft palate was 9.92 per 10,000. The prevalence of cleft lip was 3.28 per 10,000, and that of cleft lip and palate was 6.64 per 10,000. There were 5918 cases (76.8%) that were isolated, 1224 (15.9%) had malformations in other systems, and 562 (7.3%) occurred as part of recognized syndromes. Cases with greater dysmorphological severity of cleft lip with or without cleft palate were more likely to include malformations of other systems.
Resumo:
Background and aim: Neuropathic pain (NP) is a frequent and disabling disorder occurring as a consequence of a direct lesion of the nervous system and recurrently associated with a positive shift toward nervous system excitability. Peripheral nerve activity is mainly carried by voltage-gated sodium channels (VGSC), with Nav1.7 isoform being an important candidate since loss of function mutations of its gene is associated with congenital inability to experience pain. Interestingly, ubiquitin ligases from the Nedd4 family are well known proteins that regulate the turnover of many membrane proteins such as VGSC and we showed Nedd2-2 is downregualted in experimental models of chronic pain. The aim of this study was to investigate the importance of Nedd4-2 in the modulation of Nav1.7 at the membrane. Methods: In vitro: whole cell patch clamp on HEK293 cell line stably expressing Nav1.7 was used to record sodium currents (INa), where the peak current of INa reflects the quantity of functional Nav1.7 expressed at the membrane. The possibility that Nedd4-2 modulates the currents was assessed by investigating the effect of its cotransfection on INa. Biotinylation of cell surface was used to isolate membrane-targeted Nav1.7. Furthermore, as the interaction between Nedd4-2 and Nav isoforms was previously reported to rely on an xPPxYx sequence (PY-motif), we mutated this latter to study its impact in the specific interaction between Nav1.7 and Nedd4-2. GST-fusion proteins composed of the Nav1.7 c terminal 66 amino acids (wild-type or PY mutated) and GST were used to pull-down Nedd4-2 from lysates. Results: Co-transfection of Nav1.7 with Nedd4-2 reduced the Nav1.7 current amplitude by ~80% (n = 36, p <0.001), without modifying the biophysical properties of INa. In addition, we show that the quantity of Nav1.7 at the membrane was decreased when Nedd4-2 was present. This effect was dependent on the PY-motif since mutations in this sequence abolished the down-regulatory effect of Nedd4-2. The importance of this motif was further confirmed by pull down experiments since the PY mutant completely eliminate the interaction with Nedd4-2. Perspectives: Altogether, these results point to the importance of Nedd4-2 as a Nav1.7 regulator through cell surface modulation of this sodium channel. Further experiments in freshly dissociated neurons from wild type and Scn1bflox/Nedd4-2Cre mice are needed to confirm in vivo these preliminary data.
Resumo:
A 5-year-old boy was referred to our neurology clinic for suspected myopathy. His parents reported normal upper extremity strength and no limitation in daily activities; however, he was unable to raise his arms above his head. On examination, both shoulders were down-slanting and anteriorly displaced, leading to a webbed neck appearance. Muscle MRI demonstrated isolated bilateral aplasia of the trapezius muscles. His father was found to have a unilateral partial trapezius hypoplasia with no functional consequences. Conclusion: Congenital aplasia of the trapezius muscle is a rare condition; bilateral aplasia of the muscle, having been reported in only five cases, is most often associated with aplasia of the pectoralis major. This is the first report to our knowledge to demonstrate bilateral isolated trapezius aplasia by MRI.
Resumo:
A 5-year-old previously healthy boy was admitted for abdominal pain and vomiting. Physical examination showed tachypnoe (32/min), hepatomegaly and painful palpation of the upper right abdominal quadrant. Laboratory tests were normal except for elevated ammonium (202mcmol/l). Chest X-ray was performed, showing cardiomegaly and interstitial edema. Transthoracic echocardiography revealed dilated left cavities and LV hypertrophy together with a diffuse hypokinesia and LVEF of 30-40%. Diuretics and ACE-inhibitors were introduced. At that time, the differential diagnosis for the DCM included myocarditis, congenital or genetic, metabolic or autoimmune disease. The next day, the boy underwent cardiac magnetic resonance (CMR) examination, showing a severe dilatation of the LV with an end-diastolic diameter of 50mm and a volume of 150ml. LVEF was 20% with diffuse LV hypokinesia (Fig. 1). No late enhancement was present after Gadolinium injection, ruling out myocarditis. Further laboratory metabolic analysis indicated severely decreased total and free carnitin levels and low renal carnitin reabsorption, corroborating the diagnosis of primary carnitin deficiency (PCD). Carnitin substitution was initiated. The clinical condition rapidly improved. No symptoms of heart failure were present anymore. A follow-up CMR performed 9 months later confirmed the recovery. LV end-diastolic volume decreased from 150ml to 66ml, LVEF increased from 20% to 55% (Fig. 2). Late enhancement was absent after Gadolinum injection (Fig. 3).Carnitin is required for the transport of fatty acids from the cytosol into mitochondria during lipid breakdown. 75% of carnitin is obtained from food, 25% is endogenously synthesized. PCD is an autosomal recessive disorder resulting from impairment of a transporter activity, caused by mutation of the SLC22A5 gene. Incidence is about 1 in 40'000 newborns. Diagnosis is usually made at age 1 to 7. Three forms of PCD are described. In the form associated with cardiomyopathy, the disease is progressive and patient die from heart failure if not treated. Substitution of L-Carnitin leads to a dramatic improvement of disease course.This case underlines the crucial role of etiologic diagnostics in this reversible form of DCM. Early diagnostics and therapy are critical for the prognosis of the patient. This is furthermore an example of a role played by CMR in the diagnostic work-up of heart failure and its follow-up under therapy.
Resumo:
We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.
Resumo:
Acute heart failure in the early neonatal period is rare. Normally it is due to asphyxia, severe septicaemia, a congenital heart malformation or a viral myocarditis. Kawasaki disease (KD) as a cause of an neonatal myocarditis is not an established diagnosis. KD is a vasculitis of still unknown origin occurring predominantly in infants and preschool children. KD before the age of 3 months is rare. There are only few reports about KD in the 1st month. We present a newborn who showed the cardiac symptoms of KD in the 1st week of life with coronary dilatation and myocarditis. CONCLUSION: The diagnosis of incomplete KD should be considered not only in infants but also in newborns with signs of myocarditis and coronary abnormalities. Therapy with gammaglobulins may prevent the sequelae of coronary involvement.
Resumo:
AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.
Resumo:
BACKGROUND: The epidemiology of congenital small intestinal atresia (SIA) has not been well studied. This study describes the presence of additional anomalies, pregnancy outcomes, total prevalence and association with maternal age in SIA cases in Europe. METHODS: Cases of SIA delivered during January 1990 to December 2006 notified to 20 EUROCAT registers formed the population-based case series. Prevalence over time was estimated using multilevel Poisson regression, and heterogeneity between registers was evaluated from the random component of the intercept. RESULTS: In total 1133 SIA cases were reported among 5126, 164 registered births. Of 1044 singleton cases, 215 (20.6%) cases were associated with a chromosomal anomaly. Of 829 singleton SIA cases with normal karyotype, 221 (26.7%) were associated with other structural anomalies. Considering cases with normal karyotype, the total prevalence per 10 000 births was 1.6 (95% CI 1.5 to 1.7) for SIA, 0.9 (95% CI 0.8 to 1.0) for duodenal atresia and 0.7 (95% CI 0.7 to 0.8) for jejunoileal atresia (JIA). There was no significant trend in SIA, duodenal atresia or JIA prevalence over time (RR=1.0, 95% credible interval (CrI): 1.0 to 1.0 for each), but SIA and duodenal atresia prevalence varied by geographical location (p=0.03 and p=0.04, respectively). There was weak evidence of an increased risk of SIA in mothers aged less than 20 years compared with mothers aged 20 to 29 years (RR=1.3, 95% CrI: 1.0 to 1.8). CONCLUSION: This study found no evidence of a temporal trend in the prevalence of SIA, duodenal atresia or JIA, although SIA and duodenal atresia prevalence varied significantly between registers.
Resumo:
Noonan syndrome (NS) and cardio-facio-cutaneous (CFC) syndrome are autosomal dominant disorders characterized by heart defects, facial dysmorphism, ectodermal abnormalities, and mental retardation. There is a significant clinical overlap between NS and CFC syndrome, but ectodermal abnormalities and mental retardation are more frequent in CFC syndrome. Mutations in PTPN11 and KRAS have been identified in patients with NS and those in KRAS, BRAF and MAP2K1/2 have been identified in patients with CFC syndrome, establishing a new role of the RAS/MAPK pathway in human development. Recently, mutations in the son of sevenless gene (SOS1) have also been identified in patients with NS. To clarify the clinical spectrum of patients with SOS1 mutations, we analyzed 24 patients with NS, including 3 patients in a three-generation family, and 30 patients with CFC syndrome without PTPN11, KRAS, HRAS, BRAF, and MAP2K1/2 (MEK1/2) mutations. We identified two SOS1 mutations in four NS patients, including three patients in the above-mentioned three-generation family. In the patients with a CFC phenotype, three mutations, including a novel three amino-acid insertion, were identified in one CFC patient and two patients with both NS and CFC phenotypes. These three patients exhibited ectodermal abnormalities, such as curly hair, sparse eyebrows, and dry skin, and two of them showed mental retardation. Our results suggest that patients with SOS1 mutations range from NS to CFC syndrome.
Resumo:
SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase and a nuclease that restricts HIV-1 in noncycling cells. Germ-line mutations in SAMHD1 have been described in patients with Aicardi-Goutières syndrome (AGS), a congenital autoimmune disease. In a previous longitudinal whole genome sequencing study of chronic lymphocytic leukemia (CLL), we revealed a SAMHD1 mutation as a potential founding event. Here, we describe an AGS patient carrying a pathogenic germ-line SAMHD1 mutation who developed CLL at 24 years of age. Using clinical trial samples, we show that acquired SAMHD1 mutations are associated with high variant allele frequency and reduced SAMHD1 expression and occur in 11% of relapsed/refractory CLL patients. We provide evidence that SAMHD1 regulates cell proliferation and survival and engages in specific protein interactions in response to DNA damage. We propose that SAMHD1 may have a function in DNA repair and that the presence of SAMHD1 mutations in CLL promotes leukemia development.
Resumo:
Prenatal heart valve interventions aiming at the early and systematic correction of congenital cardiac malformations represent a promising treatment option in maternal-fetal care. However, definite fetal valve replacements require growing implants adaptive to fetal and postnatal development. The presented study investigates the fetal implantation of prenatally engineered living autologous cell-based heart valves. Autologous amniotic fluid cells (AFCs) were isolated from pregnant sheep between 122 and 128 days of gestation via transuterine sonographic sampling. Stented trileaflet heart valves were fabricated from biodegradable PGA-P4HB composite matrices (n = 9) and seeded with AFCs in vitro. Within the same intervention, tissue engineered heart valves (TEHVs) and unseeded controls were implanted orthotopically into the pulmonary position using an in-utero closed-heart hybrid approach. The transapical valve deployments were successful in all animals with acute survival of 77.8% of fetuses. TEHV in-vivo functionality was assessed using echocardiography as well as angiography. Fetuses were harvested up to 1 week after implantation representing a birth-relevant gestational age. TEHVs showed in vivo functionality with intact valvular integrity and absence of thrombus formation. The presented approach may serve as an experimental basis for future human prenatal cardiac interventions using fully biodegradable autologous cell-based living materials.